
OOP NOTES BY R.M.PALWE

1

Corurse Code-22316
Lesson no: 1

Course Name: OOP with C++
Lesson Name: Introduction of OOP

Unit Structure:
1.1 Software crisis

1.2 Software Evaluation

1.3 POP (Procedure Oriented Programming)

1.4 OOP (Object Oriented Programming)

1.5 Basic concepts of OOP

1.5.1 Objects

1.5.2 Classes

1.5.3 Data Abstraction and Data Encapsulation

1.5.4 Inheritance

1.5.5 Polymorphism

1.5.6 Dynamic Binding

1.5.7 Message Passing

1.6 Benefits of OOP

1.7 Object Oriented Language

1.8 Application of OOP

1.9 Introduction of C++

1.9.1 Application of C++

1.10 Simple C++ Program

1.10.1 Program Features

1.10.2 Comments

1.10.3 Output Operators

1.10.4 Iostream File

1.10.5 Namespace

1.10.6 Return Type of main ()

1.11 More C++ Statements

1.11.1 Variable

1.11.2 Input Operator

1.11.3 Cascading I/O Operator

1.12 Example with Class

1.13 Structure of C++

1.14 Creating Source File

1.15 Compiling and Linking

OOP NOTES BY R.M.PALWE

2

1.1 Software Crisis

Developments in software technology continue to be dynamic. New tools

and techniques are announced in quick succession. This has forced the

software engineers and industry to continuously look for new approaches to

software design and development, and they are becoming more and more

critical in view of the increasing complexity of software systems as well as

the highly competitive nature of the industry. These rapid advances appear

to have created a situation of crisis within the industry. The following issued

need to be addressed to face the crisis:
• How to represent real-life entities of problems in system design?
• How to design system with open interfaces?
• How to ensure reusability and extensibility of modules?
• How to develop modules that are tolerant of any changes in future?
• How to improve software productivity and decrease software cost?
• How to improve the quality of software?
• How to manage time schedules?

1.2 Software Evaluation

Ernest Tello, A well known writer in the field of artificial intelligence,

compared the evolution of software technology to the growth of the tree.

Like a tree, the software evolution has had distinct phases “layers” of

growth. These layers were building up one by one over the last five

decades as shown in fig. 1.1, with each layer representing and

improvement over the previous one. However, the analogy fails if we

consider the life of these layers. In software system each of the layers

continues to be functional, whereas in the case of trees, only the uppermost

layer is functional

OOP NOTES BY R.M.PALWE

3

1, 0

Machine Language

Assembly Language

Procedure- Oriented

Object Oriented Programming

Alan Kay, one of the promoters of the object-oriented paradigm and the

principal designer of Smalltalk, has said: “As complexity increases, architecture

dominates the basic materials”. To build today’s complex software it is just not

enough to put together a sequence of programming statements and sets of

procedures and modules; we need to incorporate sound construction techniques

and program structures that are easy to comprehend implement and modify.

With the advent of languages such as c, structured programming became

very popular and was the main technique of the 1980’s. Structured

programming was a powerful tool that enabled programmers to write

moderately complex programs fairly easily. However, as the programs grew

larger, even the structured approach failed to show the desired result in terms

of bug-free, easy-to- maintain, and reusable programs.

Object Oriented Programming (OOP) is an approach to program

organization and development that attempts to eliminate some of the pitfalls

of conventional programming methods by incorporating the best of

structured programming features with several powerful new concepts. It is a

new way of organizing and developing programs and has nothing to do with

any particular language. However, not all languages are suitable to

implement the OOP concepts easily.

1.3 Procedure-Oriented Programming

OOP NOTES BY R.M.PALWE

4

In the procedure oriented approach, the problem is viewed as the sequence

of things to be done such as reading, calculating and printing such as cobol,

fortran and c. The primary focus is on functions. A typical structure for

procedural programming is shown in fig.1.2. The technique of hierarchical

decomposition has been used to specify the tasks to be completed for solving

a problem.

Main Program

Function-1 Function-2 Function-3

Function-4

Function-5

Function-6 Function-7 Function-8

Fig. 1.2 Typical structure of procedural oriented programs

Procedure oriented programming basically consists of writing a list of

instructions for the computer to follow, and organizing these instructions into

groups known as functions. We normally use flowcharts to organize these

actions and represent the flow of control from one action to another.

In a multi- function program, many important data items are placed as

global so that they may be accessed by all the functions. Each function may

have its own local data. Global data are more vulnerable to an inadvertent

change by a function. In a large program it is very difficult to identify what

data is used by which function. In case we need to revise an external data

structure, we also need to revise all functions that access the data. This

provides an opportunity for bugs to creep in.

Another serious drawback with the procedural approach is that we do not

model real world problems very well. This is because functions are action-

oriented and do not really corresponding to the element of the problem.

Some Characteristics exhibited by procedure-oriented programming are:

OOP NOTES BY R.M.PALWE

5

• Emphasis is on doing things (algorithms).
• Large programs are divided into smaller programs known as functions.
• Most of the functions share global data.
• Data move openly around the system from function to function.
• Functions transform data from one form to another.
• Employs top-down approach in program design.

1.4 Object Oriented Paradigm

The major motivating factor in the invention of object-oriented approach is

to remove some of the flaws encountered in the procedural approach. OOP

treats data as a critical element in the program development and does not

allow it to flow freely around the system. It ties data more closely to the

function that operate on it, and protects it from accidental modification from

outside function. OOP allows decomposition of a problem into a number of

entities called objects and then builds data and function around these objects.

The organization of data and function in object-oriented programs is shown

in fig.1.3. The data of an object can be accessed only by the function

associated with that object. However, function of one object can access the

function of other objects.
Organization of data and function in OOP

Object A Object B

DATA

FUNCTIO

N

Communication

Object
DATA

FUNCTION

DATA

FUNCTION

OOP NOTES BY R.M.PALWE

6

Some of the features of object oriented programming are:

• Emphasis is on data rather than procedure.
• Programs are divided into what are known as objects.
• Data structures are designed such that they characterize the objects.
• Functions that operate on the data of an object are ties together in the data structure.

• Data is hidden and cannot be accessed by external function.
• Objects may communicate with each other through function.
• New data and functions can be easily added whenever necessary.
• Follows bottom up approach in program design.

Object-oriented programming is the most recent concept among programming paradigms and

still means different things to different people.

1.5 Basic Concepts of Object Oriented Programming

It is necessary to understand some of the concepts used extensively in object-oriented

programming. These include:
• Objects
• Classes
• Data abstraction and encapsulation
• Inheritance
• Polymorphism
• Dynamic binding
• Message passing

We shall discuss these concepts in some detail in this section.

1.5.1 Objects

Objects are the basic run time entities in an object- oriented system. They may represent a

person, a place, a bank account, a table of data or any item that the program has to handle. They

may also represent user-defined data such as vectors, time and lists. Programming problem is

analyzed in term of objects and the nature of communication between them. Program objects

should be chosen such that they match closely with the real-world objects. Objects take up

space in the memory and have an associated address like a record in Pascal, or a structure in c.

When a program is executed, the objects interact by sending messages to one another. Foe

example, if “customer” and “account” are to object in a program, then the customer object may

send a message to the count object requesting for the bank balance. Each object contain data,

and code to manipulate data. Objects can interact without having to know details of each other’s

data or code. It is a sufficient to know the type of message accepted, and the type of response

returned by the objects. Although different author

OOP NOTES BY R.M.PALWE

7

represent them differently fig 1.5 shows two notations that are popularly used in object-oriented

analysis and design.

OBJECTS: STUDENT

DATA
Name

Date-of-birth

Marks

FUNCTIONS
Total

Average

Display
………

Fig. 1.5 representing an object

1.5.2 Classes
We just mentioned that objects contain data, and code to manipulate that data. The entire set of

data and code of an object can be made a user -defined data type with the help of class. In fact,

objects are variables of the type class. Once a class has been defined, we can create any number

of objects belonging to that class. Each object is associated with the data of type class with

which they are created. A class is thus a collection of objects similar types. For examples,

Mango, Apple and orange members of class fruit. Classes are user-defined that types and

behave like the built-in types of a programming language. The syntax used to create an object is

not different then the syntax used to create an integer object in C. If fruit has been defines as a

class, then the statement

Fruit Mango;
Will create an object mango belonging to the class fruit.

1.5.3 Data Abstraction and Encapsulation

The wrapping up of data and function into a single unit (called class) is known as

encapsulation. Data and encapsulation is the most striking feature of a class. The data is not

accessible to the outside world, and only those functions which are wrapped in the class can

access it. These functions provide the interface between the object’s data and the program. This

OOP NOTES BY R.M.PALWE

8

insulation of the data from direct access by the program is called data hiding or information

hiding.

Abstraction refers to the act of representing essential features without including the background

details or explanation. Classes use the concept of abstraction and are defined as a list of abstract

attributes such as size, wait, and cost, and function operate on these attributes. They encapsulate

all the essential properties of the object that are to be created.

The attributes are some time called data members because they hold

information. The functions that operate on these data are sometimes called

methods or member function.

1.5.4 Inheritance

Inheritance is the process by which objects of one class acquired the

properties of objects of another classes. It supports the concept of

hierarchical classification. For example, the bird, ‘robin’ is a part of class

‘flying bird’ which is again a part of the class ‘bird’. The principal behind

this sort of division is that each derived class shares common characteristics

with the class from which it is derived as illustrated in fig 1.6.
In OOP, the concept of inheritance provides the idea of reusability. This

means that we can add additional features to an existing class without

modifying it. This is possible by deriving a new class from the existing one.

The new class will have the combined feature of both the classes. The real

appeal and power of the inheritance mechanism is that it

OOP NOTES BY R.M.PALWE

9

Fig. 1.6 Property inheritances

BRD

Attributes

Features

Lay Eggs

Flying Bird

Non Flying

Bird

Attributes Attributes

………… ………..

………... ………..

Robin Swallow Penguin Kiwi

Attributes Attributes Attributes Attributes

………… ………… ………… …………

………... ………... ………... ………...

OOP NOTES BY R.M.PALWE

10

Allows the programmer to reuse a class i.e almost, but not exactly, what he

wants, and to tailor the class in such a way that it does not introduced any

undesirable side-effects into the rest of classes.

1.5.5 Polymorphism

Polymorphism is another important OOP concept. Polymorphism, a Greek

term, means the ability to take more than on form. An operation may exhibit

different behavior is different instances. The behavior depends upon the

types of data used in the operation. For example, consider the operation of

addition. For two numbers, the operation will generate a sum. If the

operands are strings, then the operation would produce a third string by

concatenation. The process of making an operator to exhibit different

behaviors in different instances is known as operator overloading.

Fig. 1.7 illustrates that a single function name can be used to handle

different number and different types of argument. This is something similar

to a particular word having several different meanings depending upon the

context. Using a single function name to perform different type of task is

known as function overloading.

Shape

Draw

Circle Object Box object

Triangle

Object

Draw (Circle) Draw (box) Draw (triangle)

Fig. 1.7 Polymorphism

OOP NOTES BY R.M.PALWE

11

Polymorphism plays an important role in allowing objects having different

internal structures to share the same external interface. This means that a

general class of operations may be accessed in the same manner even though

specific action associated with each operation may differ. Polymorphism is

extensively used in implementing inheritance.

1.5.6 Dynamic Binding

Binding refers to the linking of a procedure call to the code to be executed in

response to the call. Dynamic binding means that the code associated with a

given procedure call is not known until the time of the call at run time. It is

associated with polymorphism and inheritance. A function call associated

with a polymorphic reference depends on the dynamic type of that reference.

Consider the procedure “draw” in fig. 1.7. by inheritance, every object will

have this procedure. Its algorithm is, however, unique to each object and so

the draw procedure will be redefined in each class that defines the object. At

run-time, the code matching the object under current reference will be

called.

1.5.7 Message Passing

An object-oriented program consists of a set of objects that communicate

with each other. The process of programming in an object-oriented

language, involves the following basic steps:
1. Creating classes that define object and their behavior,

2. Creating objects from class definitions, and

3. Establishing communication among objects.

Objects communicate with one another by sending and receiving

information much the same way as people pass messages to one another.

The concept of message passing makes it easier to talk about building

systems that directly model or simulate their real-world counterparts.

A Message for an object is a request for execution of a procedure, and

therefore will invoke a function (procedure) in the receiving object that

generates the desired results. Message passing involves specifying the name

of object, the name of the function (message) and the information to be sent.

OOP NOTES BY R.M.PALWE

12

Example:

Employee. Salary (name);

Object
Information

Message

Object has a life cycle. They can be created and destroyed. Communication

with an object is feasible as long as it is alive.

1.6 Benefits of OOP

OOP offers several benefits to both the program designer and the user.

Object-Orientation contributes to the solution of many problems associated

with the development and quality of software products. The new technology

promises greater programmer productivity, better quality of software and

lesser maintenance cost. The principal advantages are:

• Through inheritance, we can eliminate redundant code extend the use of

existing
• Classes.
• We can build programs from the standard working modules that

communicate with one another, rather than having to start writing the

code from scratch. This leads to saving of development time and

higher productivity.
• The principle of data hiding helps the programmer to build secure

program that can not be invaded by code in other parts of a programs.
• It is possible to have multiple instances of an object to co-exist

without any interference.

• It is possible to map object in the problem domain to those in the

program.

OOP NOTES BY R.M.PALWE

13

• It is easy to partition the work in a project based on objects.
• The data-centered design approach enables us to capture more detail

of a model can implemental form.
• Object-oriented system can be easily upgraded from small to large

system.
• Message passing techniques for communication between objects

makes to interface descriptions with external systems much simpler.

• Software complexity can be easily managed.

While it is possible to incorporate all these features in an object-oriented

system, their importance depends on the type of the project and the

preference of the programmer. There are a number of issues that need to be

tackled to reap some of the benefits stated above. For instance, object

libraries must be available for reuse. The technology is still developing and

current product may be superseded quickly. Strict controls and protocols

need to be developed if reuse is not to be compromised.

1.7 Object Oriented Language

Object-oriented programming is not the right of any particular languages.

Like structured programming, OOP concepts can be implemented using

languages such as C and Pascal. However, programming becomes clumsy

and may generate confusion when the programs grow large. A language that

is specially id designed to support the OOP concepts makes it easier to

implement them.

The languages should support several of the OOP concepts to claim that

they are object-oriented. Depending upon the features they support, they can

be classified into the following two categories:

1. Object-based programming languages, and
2. Object-oriented programming languages.

Object-based programming is the style of programming that primarily

supports encapsulation and object identity. Major feature that are

required for object based programming are:
• Data encapsulation
• Data hiding and access mechanisms
• Automatic initialization and clear-up of objects
• Operator overloading

OOP NOTES BY R.M.PALWE

14

Languages that support programming with objects are said to the objects-

based programming languages. They do not support inheritance and

dynamic binding. Ada is a typical object-based programming language.

Object-oriented programming language incorporates all of object-based

programming features along with two additional features, namely,

inheritance and dynamic binding. Object-oriented programming can

therefore be characterized by the following statements:

Object-based features + inheritance + dynamic binding

1.8 Application of OOP

OOP has become one of the programming buzzwords today. There appears

to be a great deal of excitement and interest among software engineers in

using OOP. Applications of OOP are beginning to gain importance in many

areas. The most popular application of object-oriented programming, up to

now, has been in the area of user interface design such as window. Hundreds

of windowing systems have been developed, using the OOP techniques.
Real-business system are often much more complex and contain many

more objects with complicated attributes and method. OOP is useful in these

types of application because it can simplify a complex problem. The

promising areas of application of OOP include:
• Real-time system
• Simulation and modeling
• Object-oriented data bases
• Hypertext, Hypermedia, and expertext
• AI and expert systems
• Neural networks and parallel programming
• Decision support and office automation systems
• CIM/CAM/CAD systems

OOP NOTES BY R.M.PALWE

15

The object-oriented paradigm sprang from the language, has matured into

design, and has recently moved into analysis. It is believed that the richness

of OOP environment will enable the software industry to improve not only

the quality of software system but also its productivity. Object-oriented

technology is certainly going to change the way the software engineers

think, analyze, design and implement future system.

1.9 Introduction of C++

C++ is an object-oriented programming language. It was developed by

Bjarne Stroustrup at AT&T Bell Laboratories in Murray Hill, New Jersey,

USA, in the early 1980’s. Stroustrup, an admirer of Simula67 and a strong

supporter of C, wanted to combine the best of both the languages and create

a more powerful language that could support object -oriented programming

features and still retain the power and elegance of C. The result was C++.

Therefore, C++ is an extension of C with a major addition of the class

construct feature of Simula67. Since the class was a major addition to the

original C language, Stroustrup initially called the new language ‘C with

classes’. However, later in 1983, the name was changed to C++. The idea of

C++ comes from the C increment operator ++, thereby suggesting that C++

is an augmented version of C.

C+ + is a superset of C. Almost all c programs are also C++ programs.

However, there are a few minor differences that will prevent a c program to

run under C++ complier. We shall see these differences later as and when

they are encountered.

The most important facilities that C++ adds on to C care classes,

inheritance, function overloading and operator overloading. These features

enable creating of abstract data types, inherit properties from existing data

types and support polymorphism, thereby making C++ a truly object-

oriented language.

1.9.1 Application of C++

C++ is a versatile language for handling very large programs; it is suitable

for virtually any programming task including development of editors,

compilers, databases, communication systems and any complex real life

applications systems.

OOP NOTES BY R.M.PALWE

16

• Since C++ allow us to create hierarchy related objects, we can build

special object-oriented libraries which can be used later by many

programmers.
• While C++ is able to map the real-world problem properly, the C part

of C++ gives the language the ability to get closed to the machine-

level details.
• C++ programs are easily maintainable and expandable. When a new

feature needs to be implemented, it is very easy to add to the existing

structure of an object.
• It is expected that C++ will replace C as a general-purpose language

in the near future.

1.10 Simple C++ Program
Let us begin with a simple example of a C++ program that prints a string

on the screen.

OOP NOTES BY R.M.PALWE

17

Printing A String
#include<iostream>

Using namespace std;

int main()

{

cout<<” c++ is better than c \n”;

return 0;

}

Program 1.10.1
This simple program demonstrates several C++ features.

1.10.1 Program feature

Like C, the C++ program is a collection of function. The above example

contain only one function main(). As usual execution begins at main().

Every C++ program must have a main(). C++ is a free form language. With

a few exception, the compiler ignore carriage return and white spaces. Like

C, the C++ statements terminate with semicolons.

1.10.2 Comments

C++ introduces a new comment symbol // (double slash). Comment start

with a double slash symbol and terminate at the end of the line. A comment

may start anywhere in the line, and whatever follows till the end of the line

is ignored. Note that there is no closing symbol.

The double slash comment is basically a single line comment. Multiline

comments can be written as follows:

// This is an example of
// C++ program to illustrate

// some of its features

The C comment symbols /*,*/ are still valid and are more suitable for

multiline comments. The following comment is allowed:

/* This is an example of
C++ program to illustrate

OOP NOTES BY R.M.PALWE

18

some of its features

*/

1.10.3 Output operator

The only statement in program 1.10.1 is an output statement. The statement

Cout<<”C++ is better than C.”;

Causes the string in quotation marks to be displayed on the screen. This

statement introduces two new C++ features, cout and <<. The identifier

cout(pronounced as C out) is a predefined object that represents the standard

output stream in C++. Here, the standard output stream represents the

screen. It is also possible to redirect the output to other output devices. The

operator << is called the insertion or put to operator.

1.10.4 The iostream File

We have used the following #include directive in the program:

#include <iostream>

The #include directive instructs the compiler to include the contents of the

file enclosed within angular brackets into the source file. The header file

iostream.h should be included at the beginning of all programs that use

input/output statements.

1.10.5 Namespace

Namespace is a new concept introduced by the ANSI C++ standards

committee. This defines a scope for the identifiers that are used in a

program. For using the identifier defined in the namespace scope we must

include the using directive, like

Using namespace std;

Here, std is the namespace where ANSI C++ standard class libraries are

defined. All ANSI C++ programs must include this directive. This will bring

all the identifiers defined in std to the current global scope. Using and

namespace are the new keyword of C++.

1.10.6 Return Type of main()

OOP NOTES BY R.M.PALWE

19

In C++, main () returns an integer value to the operating system. Therefore,

every main () in C++ should end with a return (0) statement; otherwise a

warning an error might occur. Since main () returns an integer type for main

() is explicitly specified as int. Note that the default return type for all

function in C++ is int. The following main without type and return will run

with a warning:

main ()
{

…………..

………….

}

OOP NOTES BY R.M.PALWE

20

1.11 More C++ Statements

Let us consider a slightly more complex C++ program. Assume that we

should like to read two numbers from the keyboard and display their average

on the screen. C++ statements to accomplish this is shown in program 1.11.1

AVERAGE OF TWO NUMBERS

#include<iostream.h> // include header file

Using namespace std;

Int main()

{

Float number1, number2,sum, average;
Cin >> number1; // Read Numbers

Cin >> number2; // from keyboard

Sum = number1 + number2;

Average = sum/2;

Cout << ”Sum = “ << sum << “\n”;

Cout << “Average = “ << average << “\n”;

Return 0;

}//end of example

The output would be:
Enter two numbers: 6.5 7.5

Sum = 14

Average = 7

Program 1.11.1
1.11.1 Variables

The program uses four variables number1, number2, sum and average. They

are declared as type float by the statement.

float number1, number2, sum, average;

All variable must be declared before they are used in the program.

OOP NOTES BY R.M.PALWE

21

1.11.2 Input Operator
The statement

cin >> number1;

Is an input statement and causes the program to wait for the user to type

in a number. The number keyed in is placed in the variable number1. The

identifier cin (pronounced ‘C in’) is a predefined object in C++ that

corresponds to the standard input stream. Here, this stream represents the

keyboard.

The operator >> is known as extraction or get from operator. It extracts

(or takes) the value from the keyboard and assigns it to the variable on its

right fig 1.8. This corresponds to a familiar scanf() operation. Like <<,

the operator >> can also be overloaded.

Object Execution operator Variable

Cin

 >>

45.5

Keyboard

Fig

1.8 Input using extraction operator

1.11.3 Cascading of I/O Operators

We have used the insertion operator << repeatedly in the last two

statements for printing results.

The statement

OOP NOTES BY R.M.PALWE

22

Cout << “Sum = “ << sum << “\n”;

First sends the string “Sum = “ to cout and then sends the value of sum.

Finally, it sends the newline character so that the next output will be in

the new line. The multiple use of
<< in one statement is called cascading. When cascading an output

operator, we should ensure necessary blank spaces between different

items. Using the cascading technique, the last two statements can be

combined as follows:

Cout << “Sum = “ << sum << “\n”
<< “Average = “ << average << “\n”;

This is one statement but provides two line of output. If you want only one

line of output, the statement will be:

Cout << “Sum = “ << sum << “,”
<< “Average = “ << average << “\n”;

The output will be:

Sum = 14, average = 7

We can also cascade input iperator >> as shown below:

Cin >> number1 >> number2;

The values are assigned from left to right. That is, if we key in two values,

say, 10 and 20, then 10 will be assigned to munber1 and 20 to number2.

1.12 An Example with Class

• One of the major features of C++ is classes. They provide a method of

binding together data and functions which operate on them. Like

structures in C, classes are user-defined data types.

OOP NOTES BY R.M.PALWE

23

Program 1.12.1 shows the use of class in a C++ program.

USE OF CLASS

#include<iostream.h> // include header file

using namespace std;
class person

{

char name[30];
Int age;

public:

void getdata(void);

void display(void);

};

void person :: getdata(void)

{

cout << “Enter name: “;

cin >> name;
cout << “Enter age: “;
cin >> age;

OOP NOTES BY R.M.PALWE

24

}

Void person : : display(void)

{

cout << “\nNameame: “ << name;

cout << “\nAge: “ << age;

}

Int main()
{

person p;

p.getdata();

p.display();

Return 0;

}//end of example

PROGRAM 1.12.1

The output of program is:

Enter Name: Ravinder
Enter age:30

Name:Ravinder

Age: 30

The program define person as a new data of type class. The class person

includes two basic data type items and two function to operate on that data.

These functions are called member function. The main program uses

person to declare variables of its type. As pointed out earlier, class variables

are known as objects. Here, p is an object of type person. Class object are

used to invoke the function defined in that class.

1.13 Structure of C++ Program

As it can be seen from program 1.12.1, a typical C++ program would

contain four sections as shown in fig. 1.9. This section may be placed in

separate code files and then compiled independently or jointly.

OOP NOTES BY R.M.PALWE

25

It is a common practice to organize a program into three separate files. The

class declarations are placed in a header file and the definitions of member

functions go into another file. This approach enables the programmer to

separate the abstract specification of the interface from the implementation

details (member function definition).

Finally, the main program that uses the class is places in a third file which

“includes: the previous two files as well as any other file required.

Include Files

Class declaration

Member functions definitions

Main function program

Fig 1.9 Structure of a C++ program

This approach is based on the concept of client-server model as shown in

fig. 1.10. The class definition including the member functions constitute the

server that provides services to the main program known as client. The client

uses the server through the public interface of the class.
Fig. 1.10 The client-server model

Member Function

Server

Class Definition

Client

Main function Program

OOP NOTES BY R.M.PALWE

26

1.14 Creating the Source File

Like C programs can be created using any text editor. Foe example, on the

UNIX, we can use vi or ed text editor for creating using any text editor for

creating and editing the source code. On the DOS system, we can use endlin

or any other editor available or a word processor system under non-

document mode.

Some systems such as Turboc C++ provide an integrated environment for

developing and editing programs

The file name should have a proper file extension to indicate that it is a

C++ implementations use extensions such as .c,.C, .cc, .cpp and .cxx.

Turboc C++ and Borland C++ use .c for C programs and .cpp(C plus plus)

for C++ programs. Zortech C++ system use .cxx while UNIX AT&T version

uses .C (capital C) and .cc. The operating system manuals should be

consulted to determine the proper file name extension to be used.

1.15 Compiling and Linking

The process of compiling and linking again depends upon the operating

system. A few popular systems are discussed in this section.

Unix AT&T C++

This process of implementation of a C++ program under UNIX is similar to

that of a C program. We should use the “cc” (uppercase) command to

compile the program. Remember, we use lowercase “cc” for compiling C

programs. The command

CC example.C

At the UNIX prompt would compile the C++ program source code

contained in the file example.C. The compiler would produce an object file

example.o and then automatically link with the library functions to produce

an executable file. The default executable filename is a. out.

A program spread over multiple files can be compiled as follows:

CC file1.C file2.o
The statement compiles only the file file1.C and links it with the

previously compiled file2.o file. This is useful when only one of the files

OOP NOTES BY R.M.PALWE

27

needs to be modified. The files that are not modified need not be compiled

again.

Turbo C++ and Borland C++

Turbo C++ and Borland C++ provide an integrated program development

environment under MS DOS. They provide a built-in editor and a menu bar

includes options such as File, Edit, Compile and Run.
We can create and save the source files under the File option, and edit them

under the Edit option. We can then compile the program under the compile

option and execute it under the Run option. The Run option can be used

without compiling the source code.

Summary
• Software technology has evolved through a series of phases during

the last five decades.
• POP follows top-down approach where problem is viewed as

sequence of task to be performed and functions are written for

implementing these tasks.

• POP has two major drawbacks:
• Data can move freely around the program.
• It does not model very well the real-world problems.
• OOP was inventing to overcome the drawbacks of POP. It

follows down -up approach.

• In OOP, problem is considered as a collection of objects and objects

are instance of classes.

• Data abstraction refers to putting together essential features

without including background details.
• Inheritance is the process by which objects of one class acquire

properties of objects of another class.
• Polymorphism means one name, multiple forms. It allows us to

have more than one function with the same name in a program.

• Dynamic binding means that the code associated with a given

procedure is not known until the time of the run time.
• Message passing involves specifying the name of the object, the

name of the function and the information to be sent.
• C++ is a superset of C language.
• C++ ads a number of features such as objects, inheritance, function

overloading and operator overloading to C.

OOP NOTES BY R.M.PALWE

28

• C++ supports interactive input and output features and introduces

anew comment symbol // that can be used for single line comment.
• Like C programs, execution of all C++ program begins at main()

function.

Keywords:

• Assembly Language • Local data

• Bottom up Programming • Machine Language

• C++ • Member Function

• Classes • Message Passing

• Data Abstraction • Methods

• Data Encapsulation • Modular Programming

• Data Hiding • Multiple Inheritances

• Data Member • Object Based Programming

• Dynamic Binding • Objective C

• Early Binding • Object Oriented Language

• Function overloading •

Object Oriented

Programming

• Functions • Objects

• Global Data • Operator Overloading

• Hierarchical Classification • Polymorphism

• Inheritance •

Procedure Oriented

Programming

• Late Binding • Reusability

• #include • Top down Programming

• Main() • Extraction Operator

OOP NOTES BY R.M.PALWE

29

• Cascading • Float

• Namespace •

Get from

Operator

• Class • Input operator

• Object • Turbo c++

• Operator overloading • iostream

• Comments • int

• Output operator • using

• cout • iostream.h

• edlin • windows

• return () • Keyboard

Questions

1. What are the major issues facing the software industry today?
2. What is POP? Discuss its features.

3. Describe how data are shared by functions in procedure-oriented

programs?

4. What is OOP? What are the difference between POP and OOP?

5. How are data and functions organized in an object-oriented program?

6. What are the unique advantages of an object-oriented programming

paradigm?

7. Distinguish between the following terms:

(a) Object and classes

(b) Data abstraction and data encapsulation

(c) Inheritance and polymorphism

(d) Dynamic binding and message passing

8. Describe inheritance as applied to OOP.

9. What do you mean by dynamic binding? How it is useful in OOP?

10. What is the use of preprocessor directive #include<iostream>?

11. How does a main () function in c++ differ from main () in c?

12. Describe the major parts of a c++ program.

13. Write a program to read two numbers from the keyboard and

display the larger value on the screen.

14. Write a program to input an integer value from keyboard and

display on screen “WELL DONE” that many times.

References:

1. Object –Oriented –Programming in C++ by E Balagurusamy.

OOP NOTES BY R.M.PALWE

30

2. Object –Oriented –Programming with ANSI & Turbo C++ by Ashok N.

Kamthane.

3. OO Programming in C++ by Robert Lafore, Galgotia Publications Pvt. Ltd.
4. Mastering C++ By K R Venugopal, Rajkumar Buyya, T Ravishankar.
5. Object Oriented Programming and C++ By R. Rajaram.
6. Object –Oriented –Programming in C++ by Robert Lafore.

OOP NOTES BY R.M.PALWE

31

--

Subject: Object Oriented Programming using C++

Corurse Code-22316

Lesson: Function in c++ &Object and

classes

OOP NOTES BY R.M.PALWE

32

--

STRUCTURE

2.1 Introduction

4.2 Function Definition and Declaration

4.3 Arguments to a Function

4.3.1 Passing Arguments to a Function

4.3.2 Default Arguments

4.3.3 Constant Arguments

4.4 Calling Functions

4.5 Inline Functions

4.6 Scope Rules of Functions and Variables

4.7 Definition and Declaration of a Class

4.8 Member Function Definition

4.8.1 Inside Class Definition

4.8.2 Outside Class Definition Using Scope Resolution Operator (::)

4.9 Declaration of Objects as Instances of a Class

4.10 Accessing Members From Object(S)

4.11 Static Class Members

4.11.1 Static Data Member

4.11.2 Static Member Function

4.12 Friend Classes

OOP NOTES BY R.M.PALWE

33

4.13 Summary

4.14 Keywords

4.15 Review Questions

4.16 Further Readings

4.1 INTRODUCTION

Functions are the building blocks of C++ programs where all the

program activity occurs. Function is a collection of declarations and

statements.

Need for a Function

Monolethic program (a large single list of instructions) becomes

difficult to understand. For this reason functions are used. A function has a

clearly defined objective (purpose) and a clearly defined interface with other

functions in the program. Reduction in program size is another reason for

using functions. The functions code is stored in only one place in memory,

even though it may be executed as many times as a user needs.

The following program illustrates the use of a function :

//to display general message using function

#include<iostream.h>

include<conio.h>

void main()

{

void disp(); //function prototype

clrscr(); //clears the screen

OOP NOTES BY R.M.PALWE

34

disp(); //function call

getch(); //freeze the monitor

}

//function definition

void disp()

{

cout<<”Welcome to the GJU of S&T\n”;

cout<<”Programming is nothing but logic implementation”;

}

PROGRAM 4.1

In this Unit, we will also discuss Class, as important Data Structure of C++.

A Class is the backbone of Object-Oriented Computing. It is an abstract

data type. We can declare and define data as well as functions in a class. An

object is a replica of the class to the exception that it has its own name. A

class is a data type and an object is a variable of that type. Classes and

objects are the most important features of C++. The class implements OOP

features and ties them together.

4.2 FUNCTION DEFINITION AND DECLARATION

In C++, a function must be defined prior to it’s use in the program. The function

definition contains the code for the function. The function definition for

display_message () in program 6.1 is given below the main () function. The

general syntax of a function definition in C++ is shown below:

Type name_of_the_function (argument list)

{

//body of the function

}

OOP NOTES BY R.M.PALWE

35

Here, the type specifies the type of the value to be returned by the

function. It may be any valid C++ data type. When no type is given, then the

compiler returns an integer value from the function.

Name_of_the_function is a valid C++ identifier (no reserved word

allowed) defined by the user and it can be used by other functions for calling this

function.

Argument list is a comma separated list of variables of a function

through which the function may receive data or send data when called from other

function. When no parameters,the argument list is empty as you have already

seen in program 6.1. The following function illustrates the concept of function

definition :

//function definition add()

void add()

{

int a,b,sum;

cout<<”Enter two integers”<<endl;

cin>>a>>b;

sum=a+b;

cout<<”\nThe sum of two numbers is “<<sum<<endl;

}

The above function add () can also be coded with the help of

arguments of parameters as shown below:

//function definition add()

void add(int a, int b) //variable names are must in definition

OOP NOTES BY R.M.PALWE

36

{

int sum;

sum=a+b;

cout<<”\nThe sum of two numbers is “<<sum<<endl;

}

4.3 ARGUMENTS TO A FUNCTION

Arguments(s) of a function is (are) the data that the function

receives when called/invoked from another function.

4.3.1 PASSING ARGUMENTS TO A FUNCTION

It is not always necessary for a function to have arguments or

parameters. The functions add () and divide () in program 6.3 did not contain

any arguments. The following example illustrates the concept of passing

arguments to function SUMFUN ():

// demonstration of passing arguments to a function

OOP NOTES BY R.M.PALWE

37

#include<iostream.h>

void main ()

{

float x,result; //local variables

int N;

formal parameters

 Semicolon here

float SUMFUN(float x, int N); //function declaration return

type

………………………….

………………………….

result = SUMFUN(X,N); //function declaration

}

//function SUMFUN() definition

No semicolon here

float SUMFUN(float x,int N) //function declaration

{

………………………….

…………………………. Body of the function

………………………….

}

No semicolon here

4.3.2 DEFAULT ARGUMENTS

OOP NOTES BY R.M.PALWE

38

C++ allows a function to assign a parameter the default value in

case no argument for that parameter is specified in the function call. For

example.

// demonstrate default arguments function

#include<iostream.h>

int calc(int U)

{

If (U % 2 = = 0)

return U+10;

Else

return U+2

}

Void pattern (char M, int B=2)

{

for (int CNT=0;CNT<B; CNT++)

cout<calc(CNT) <<M;

cout<<endl;

}

Void main ()

{

Pattern(‘*’);

Pattern (‘#’,4)’

Pattern (;@;,3);

}

OOP NOTES BY R.M.PALWE

39

4.3.3 CONSTANT ARGUMENTS

A C++ function may have constant arguments(s). These arguments(s)

is/are treated as constant(s). These values cannot be modified by the

function.

For making the arguments(s) constant to a function, we should use the

keyword const as given below in the function prototype :

Void max(const float x, const float y, const float z);

Here, the qualifier const informs the compiler that the arguments(s)

having const should not be modified by the function max (). These are quite

useful when call by reference method is used for passing arguments.

4.4 CALLING FUNCTIONS

In C++ programs, functions with arguments can be invoked by :

(a) Value

(b) Reference

Call by Value: - In this method the values of the actual parameters (appearing in

the

function call) are copied into the formal parameters (appearing in the function

definition), i.e., the function creates its own copy of argument values and operates

on them. The following program illustrates this concept :

//calculation of compound interest using a function

OOP NOTES BY R.M.PALWE

40

#include<iostream.h>

#include<conio.h>

#include<math.h> //for pow()function

Void main()

{

Float principal, rate, time; //local variables

Void calculate (float, float, float); //function prototype clrscr();

Cout<<”\nEnter the following values:\n”;

Cout<<”\nPrincipal:”;

Cin>>principal;

Cout<<”\nRate of interest:”;

Cin>>rate;

Cout<<”\nTime period (in yeaers) :”;

Cin>>time;

Calculate (principal, rate, time); //function call

OOP NOTES BY R.M.PALWE

41

Getch ();

}

//function definition calculate()

Void calculate (float p, float r, float t)

{

Float interest; //local variable Interest = p*

(pow((1+r/100.0),t))-p; Cout<<”\nCompound

interest is : “<<interest; }

Call by Reference: - A reference provides an alias – an alternate name – for the

variable, i.e., the same variable’s value can be used by two different names : the

original name and the alias name.

In call by reference method, a reference to the actual arguments(s) in the calling

program is passed (only variables). So the called function does not create its own

copy of original value(s) but works with the original value(s) with different name.

Any change in the original data in the called function gets reflected back to the

calling function.

It is useful when you want to change the original variables in the calling

function by the called function.

//Swapping of two numbers using function call by reference

#include<iostream.h>

#include<conio.h>

void main()

{

OOP NOTES BY R.M.PALWE

42

clrscr();

int num1,num2;

void swap (int &, int &); //function prototype

cin>>num1>>num2;

cout<<”\nBefore swapping:\nNum1: “<<num1;

cout<<endl<<”num2: “<<num2;

swap(num1,num2); //function call

cout<<”\n\nAfter swapping : \Num1: “<<num1;

cout<<endl<<”num2: “<<num2; getch();

}

//function fefinition swap()

void swap (int & a, int & b)

{

Int temp=a;

a=b;

b=temp;

}

4.5 INLINE FUNCTIONS

These are the functions designed to speed up program execution. An inline

function is expanded (i.e. the function code is replaced when a call to the inline

function is made) in the line where it is invoked. You are familiar with the fact that

in case of normal functions, the compiler have to jump to another location for the

execution of the function and then the control is returned back to the instruction

immediately after the function call statement. So execution time taken is more in

OOP NOTES BY R.M.PALWE

43

case of normal functions. There is a memory penalty in the case of an inline

function.

The system of inline function is as follows :

inline function_header

{

body of the function

}

For example,

//function definition min()

inline void min (int x, int y)

cout<< (x < Y? x : y);

}

Void main()

{

int num1, num2;

cout<<”\Enter the two intergers\n”;

cin>>num1>>num2;

min (num1,num2; //function code inserted here

}

An inline function definition must be defined before being invoked as shown

in the above example. Here min () being inline will not be called during

execution, but its code would be inserted into main () as shown and then it

would be compiled.

OOP NOTES BY R.M.PALWE

44

If the size of the inline function is large then heavy memory pentaly

makes it not so useful and in that case normal function use is more useful.

The inlining does not work for the following situations :

1. For functions returning values and having a loop or a switch

or a goto statement.

2. For functions that do not return value and having a return

statement.

3. For functions having static variable(s).

4. If the inline functions are recursive (i.e. a function defined in

terms of itself).

The benefits of inline functions are as follows :

1. Better than a macro.

2. Function call overheads are eliminated.

3. Program becomes more readable.

4. Program executes more efficiently.

OOP NOTES BY R.M.PALWE

45

4.6 SCOPE RULES OF FUNCTIONS AND VARIABLES

The scope of an identifier is that part of the C++ program in which it is

accessible. Generally, users understand that the name of an identifier must be

unique. It does not mean that a name can’t be reused. We can reuse the name in a

program provided that there is some scope by which it can be distinguished

between different cases or instances.

In C++ there are four kinds of scope as given below :

1. Local Scope

2. Function Scope

3. File Scope

4. Class Scope

Local Scope:- A block in C++ is enclosed by a pair of curly braces i.e., ‘{‘

and ‘}’. The variables declared within the body of the block are called local

variables and can be used only within the block. These come into existence when

the control enters the block and get destroyed when the control leaves the closing

brace. You should note the variable(s) is/are available to all the enclosed blocks

within a block.

For example,

int x=100;

{ cout<<x<<endl;

Int x=200;

{

cout<<x<<endl;

int x=300;

OOP NOTES BY R.M.PALWE

46

{

cout<<x<<endl;

}

}

cout<<x<<endl;

}

Function Scope : It pertains to the labels declared in a function i.e., a label

can be used inside the function in which it is declared. So we can use the same

name labels in different functions.

For example,

//function definition add1()

void add1(int x,int y,int z)

{

int sum = 0;

sum = x+y+z;

cout<<sum;

}

//function definition add2()

coid add2(float x,float y,float z)

{

Float sum = 0.0;

sum = x+y+z;

cout<<sum;

}

Here the labels x, y, z and sum in two different functions add1 () and

add2 () are declared and used locally.

OOP NOTES BY R.M.PALWE

47

File Scope : If the declaration of an identifier appears outside all functions, it is

available to all the functions in the program and its scope becomes file scope. For

Example,

int x;

void square (int n)

{

cout<<n*n;

}

void main ()

{

int num;

...........

cout<<x<<endl;

cin>>num;

squaer(num);

…………...........

}

Here the declarations of variable x and function square () are outside all

the functions so these can be accessed from any place inside the program. Such

variables/functions are called global.

Class Scope : In C++, every class maintains its won associated scope. The class

members are said to have local scope within the class. If the name of a variable is

reused by a class member, which already has a file scope, then the variable will be

hidden inside the class. Member functions also have class scope.

OOP NOTES BY R.M.PALWE

48

4.7 DEFINITION AND DECLARATION OF A CLASS

A class in C++ combines related data and functions together. It makes

a data type which is used for creating objects of this type.

Classes represent real world entities that have both data type

properties (characteristics) and associated operations (behavior).

The syntax of a class definition is shown below :

Class name_of _class

: variable declaration; // data member

Function declaration; // Member Function (Method)

protected: Variable declaration;

Function declaration;

public : variable declaration;

Function declaration;

};

OOP NOTES BY R.M.PALWE

49

Here, the keyword class specifies that we are using a new data type and is followed

by the class name.

The body of the class has two keywords namely :

(i) private (ii) public

In C++, the keywords private and public are called access specifiers.

The data hiding concept in C++ is achieved by using the keyword private. Private

data and functions can only be accessed from within the class itself. Public data

and functions are accessible outside the class also. This is shown below :

Class
Private

data members

and

member functions

Public

data members

and

member functions

Can only be accessed

from within the class

Can only be accessed

from outside the class

OOP NOTES BY R.M.PALWE

50

Data hiding not mean the security technique used for protecting computer

databases. The security measure is used to protect unauthorized users from

performing any operation (read/write or modify) on the data.

The data declared under Private section are hidden and safe from

accidental manipulation. Though the user can use the private data but not

by accident.

The functions that operate on the data are generally public so that

they can be accessed from outside the class but this is not a rule that we must

follow.

4.8 MEMBER FUNCTION DEFINITION

The class specification can be done in two part :

(i) Class definition. It describes both data members and member

functions.

(ii) Class method definitions. It describes how certain class member

functions

are coded.

We have already seen the class definition syntax as well as an example.

In C++, the member functions can be coded in two ways :

(a) Inside class definition

(b) Outside class definition using scope resolution operator (::)

The code of the function is same in both the cases, but the function

header is different as explained below :

4.8.1 Inside Class Definition:

OOP NOTES BY R.M.PALWE

51

When a member function is defined inside a class, we do not require to

place a membership label along with the function name. We use only small

functions inside the class definition and such functions are known as inline

functions.

In case of inline function the compiler inserts the code of the body of

the function at the place where it is invoked (called) and in doing so the program

execution is faster but memory penalty is there.

4.8.2 Outside Class Definition Using Scope Resolution Operator (::) :

In this case the function’s full name (qualified_name) is written as shown:

Name_of_the_class :: function_name

The syntax for a member function definition outside the class definition is :

return_type name_of_the_class::function_name (argument list)

{

body of function

}

OOP NOTES BY R.M.PALWE

52

Here the operator::known as scope resolution operator helps in defining

the member function outside the class. Earlier the scope resolution operator(::)was

ised om situations where a global variable exists with the same name as a local

variable and it identifies the global variable.

4.9 DECLARATION OF OBJECTS AS INSTANCES OF A CLASS

The objects of a class are declared after the class definition. One must

remember that a class definition does not define any objects of its type, but it

defines the properties of a class. For utilizing the defined class, we need

variables of the class type. For example,

Largest ob1,ob2; //object declaration

will create two objects ob1 and ob2 of largest class type. As

mentioned earlier, in C++ the variables of a class are known as objects. These

are declared like a simple variable i.e., like fundamental data types.

In C++, all the member functions of a class are created and stored when

the class is defined and this memory space can be accessed by all the objects

related to that class.

Memory space is allocated separately to each object for their data

members. Member variables store different values for different objects of a class.

The figure shows this concept

OOP NOTES BY R.M.PALWE

53

Common for all objects

 Member Member Member function3

 Memory allocated when

 member functions are defined

 Object 1 Object 2

 data member data member 1

data member data member 2

Memory allocated when

objects declared

A class, its member functions and objects in memory.

4.10 ACCESSING MEMBERS FROM OBJECT(S)

After defining a class and creating a class variable i.e., object we can

access the data members and member functions of the class. Because the data

members and member functions are parts of the class, we must access these using

the variables we created. For functions are parts of the class, we must access these

using the variable we created. For Example,

Class student

{

private:

char reg_no[10];

OOP NOTES BY R.M.PALWE

54

` char name[30];

int age;

char address[25];

public :

void init_data()

{

- - - - - //body of function

- ----

}

void display_data()

}

};

student ob; //class variable (object) created

Ob.init_data(); //Access the member function

ob.display_data(); //Access the member function - ----

Here, the data members can be accessed in the member functions as these

have private scope, and the member functions can be accessed outside the class

i.e., before or after the main() function.

4.11 STATIC CLASS MEMBERS

Data members and member functions of a class in C++, may be qualified

as static.

We can have static data members and static member function in a class.

4.11.1 Static Data Member: It is generally used to store value common to

OOP NOTES BY R.M.PALWE

55

the whole class. The static data member differs from an ordinary data member in

the following ways :

(i) Only a single copy of the static data member is used by all the

objects.

(ii) It can be used within the class but its lifetime is the whole

program. For making a data member static, we require :

(a) Declare it within the class.

(b) Define it outside the class.

For example

Class student

{

Static int count; //declaration within class

};

The static data member is defined outside the class as :

int student :: count; //definition outside class

The definition outside the class is a must.

We can also initialize the static data member at the time of its definition as:

int student :: count = 0;

If we define three objects as : sudent obj1, obj2, obj3;

4.11.2 Static Member Function: A static member function can access only

the static members of a class. We can do so by putting the keyword static before

the name of the function while declaring it for example,

OOP NOTES BY R.M.PALWE

56

Class student

{

Static int count;

public :

static void showcount (void) //static member function

{

Cout<<”count=”<<count<<”\n”;

}

};

int student ::count=0;

Here we have put the keyword static before the name of the function

shwocount ().

In C++, a static member function fifers from the other member functions in

the following
ways:

(i) Only static members (functions or variables) of the same

class can be accessed by a static member function.
(ii) It is called by using the name of the class rather than an object

as given below:

Name_of_the_class :: function_name

For example,

student::showcount();

4.12 FRIEND CLASSES

OOP NOTES BY R.M.PALWE

57

In C++ , a class can be made a friend to another class. For example,

class TWO; // forward declaration of the class TWO

class ONE

{

………………………

…………….

public:

……………..

……………..

friend class TWO; // class TWO declared as friend of class ONE

};

Now from class TWO , all the member of class ONE can be accessed.

4.13 Summary

In this Unit, we have discussed the concept of function in c++, its

declaration and definition. we have also discussed the concept of class, its

declaration and definition. It also explained the ways for creating objects,

accessing the data members of the class. We have seen the way to pass objects as

arguments to the functions with call by value and call by reference.

4.14 Keywords

Inline Functions:- An inline function is expanded in the line where it is invoked.

Member Function:- Private means that they can be accessed only by the

functions within the class.
Classes:- When you create the definition of a class you are defining the

attributes and behavior of a new type.
Objects:- Declaring a variable of a class type creates an object. You can have

many variables of the same type (class).

OOP NOTES BY R.M.PALWE

58

4.15 Review Questions

Q. 1. what is a function ? How will you define a function in C++ ?

Q. 2. How are the argument data types specified for a C++ function? Explain with

Suitable example.

Q. 3. What types of functions are available in C++ ? Explain.

Q. 4. What is recursion? While writing any recursive function what thing(s)

must be taken care of ?

Q. 5. What is inline function? When will you make a function inline and why ?

Q.6. What is a class? How objects of a class are created ?

Q. 7. What is the significance of scope resolution operator (::) ?

Q. 8. Define data members , member function, private and public members

with example.

Q. 9. Define a class student with the following specifications:

Adm_no integer

Sname 20 characters

Eng, math, science float (marks in three subjects)

Total float

Ctotal() a function to calculate eng + math + science marks

OOP NOTES BY R.M.PALWE

59

Public member functions of class student

Takedata() function to accept values for adm_no , sname,

marks in eng, math, science and invoke
ctotal() to

calculate total.

Showdata() function to display all the data members on
the

screen.

Q.10. Define a string data type with the following functionality:

- A constructor having no parameters,

- Constructors which initialize strings as follows:

• A constructor that creates a string of specific size
• Constructor that initializes using a pointer string

• A copy constructor

- Define the destructor for the class

- It has overloaded operators. (This part of question will be taken up in the

later units).
- There is operation for finding length of the string.

4.16 Further Readings

1. Rambagh J. , “ Object Oriented Modeling and Design” , Prentice Hall of

India , New Delhi.

2. E. Balagrusamy, “Object Oriented Programming with C++”, Tata McGraw

Hill.

OOP NOTES BY R.M.PALWE

60

3.

OOP NOTES BY R.M.PALWE

61

--

Subject: Object Oriented Programming using C++

Corurse Code-22316

Lesson: Constructors and Destructors,Operator Overloading and Type

Conversions

Lesson No. : 3

--

STRUCTURE

3.1 Introduction

3.2 DECLARATION AND DEFINITION OF A CONSTRUCTOR

3.3 TYPE OF CONSTRUCTOR

3.3.1 OVERLOADED CONSTRUCTORS

3.3.2 COPY CONSTRUCTOR

3.3.3 DYNAMIC INITIALIZATION OF OBJECTS

3.3.4 CONSTRUCTORS AND PRIMITIVE TYPES

3.3.5 CONSTRUCTOR WITH DEFAULT ARGUMENTS

3.4 SPECIAL CHARACTERISTICS OF CONSTRUCTORS

3.5 DECLARATION AND DEFINITION OF A DESTRUCTOR

3.6 SPECIAL CHARACTERISTICS OF DESTRUCTORS

3.7 DECLARATION AND DEFINITION OF A OVERLOADING

3.8 ASSIGNMENT AND INITIALISATION

3.9 TYPE CONVERSIONS

3.10 Summary
3.11 Keywords

3.12 Review Questions

3.13 Further Readings

OOP NOTES BY R.M.PALWE

62

3.1 INTRODUCTION

A constructor (having the same name as that of the class) is a member

function which is automatically used to initialize the objects of the class type with

legal initial values. Destructors are the functions that are complimentary to

constructors. These are used to de-initialize objects when they are destroyed. A

destructor is called when an object of the class goes out of scope, or when the

memory space used by it is de allocated with the help of delete operator.

Operator overloading is one of the most exciting features of C++. It is

helpful in enhancement of the power of extensibility of C++ language. Operator

overloading redefines the C++ language. User defined data types are made to

behave like built-in data types in C++. Operators +, *. <=, += etc. can be given

additional meanings when applied on user defined data types using operator

overloading. The mechanism of providing such an additional meaning to an

operator is known as operator overloading in C++.

5.2 Declaration and Definition of a Constructor:-

It is defined like other member functions of the class, i.e., either

inside the class definition or outside the class definition.

For example, the following program illustrates the concept of a

constructor :

//To demonstrate a constructor

#include <iostram.h>

#include <conio.h>

Class rectangle

{

OOP NOTES BY R.M.PALWE

63

private :

float length, breadth;

public:

rectangle ()//constructor definition

{

//displayed whenever an object is created

cout<<”I am in the constructor”; length-10.0;

breadth=20.5;

}

float area()

{

return (length*breadth);

}

};

void main()

{

clrscr();

rectangle rect; //object declared

cout<<”\nThe area of the rectangle with default parameters

is:”<<rect.area()<<”sq.units\n”;

getch();

}

5.3 Type Of Constructor

There are different type of constructors in C++.

5.3.1 Overloaded Constructors

OOP NOTES BY R.M.PALWE

64

Besides performing the role of member data initialization,

constructors are no different from other functions. This included overloading

also. In fact, it is very common to find overloaded constructors. For example,

consider the following program with overloaded constructors for the figure class

:

//Illustration of overloaded constructors

//construct a class for storage of dimensions of circles.

//triangle and rectangle and calculate their area

#include<iostream.h>

#include<conio.h>

#include<math.h>

#include<string.h> //for strcpy()Class figure

{

Private:

Float radius, side1,side2,side3; //data members Char

shape[10];

Public:

figure(float r) //constructor for circle

{

radius=r;

strcpy (shape, “circle”);

}

figure (float s1,float s2) //constructor for rectangle

strcpy

OOP NOTES BY R.M.PALWE

65

{

Side1=s1;

Side2=s2;

Side3=radius=0.0; //has no significance in rectangle

strcpy(shape,”rectangle”);

}

Figure (float s1, floats2, float s3) //constructor for triangle

{

side1=s1;

side2=s2;

side3=s3;

radius=0.0;

strcpy(shape,”triangle”);

}

void area() //calculate area

{

float ar,s;

if(radius==0.0)

{

if (side3==0.0)

ar=side1*side2;

else

ar=3.14*radius*radius;

cout<<”\n\nArea of the “<<shape<<”is :”<<ar<<”sq.units\n”;

}

OOP NOTES BY R.M.PALWE

66

};

Void main()

{

Clrscr();

Figure circle(10.0); //objrct initialized using constructor

Figure rectangle(15.0,20.6);//objrct initialized using onstructor

Figure Triangle(3.0, 4.0, 5.0); //objrct initialized using constructor

Rectangle.area();

Triangle.area();

Getch();//freeze the monitror

}

5.3.2 Copy Constructor

It is of the form classname (classname &) and used for the

initialization of an object form another object of same type. For example,

Class fun

{

Float x,y;

Public:

Fun (floata,float b)//constructor

{

x = a;

y = b;

}

Fun (fun &f) //copy constructor {cout<<”\ncopy

constructor at work\n”; X = f.x;

OOP NOTES BY R.M.PALWE

67

Y = f.y;

}

Void display (void)

{

{

Cout<<””<<y<<end1;

}

};

Here we have two constructors, one copy constructor for copying data

value of a fun object to another and other one a parameterized constructor for

assignment of initial values given.

5.3.3 Dynamic Initialization of Objects

In C++, the class objects can be initialized at run time (dynamically).

We have the flexibility of providing initial values at execution time. The following

program illustrates this concept:

//Illustration of dynamic initialization of objects

#include <iostream.h>

#include <conio.h>

Class employee

{

Int empl_no;

Float salary;

OOP NOTES BY R.M.PALWE

68

Public:

Employee() //default constructor

{}

Employee(int empno,float s)//constructor with arguments {

Empl_no=empno;

Salary=s;

}

Employee (employee &emp)//copy constructor

{

Cout<<”\ncopy constructor working\n”;

Empl_no=emp.empl_no;

Salary=emp.salary;

}

Void display (void)

{

Cout<<”\nEmp.No:”<<empl_no<<”salary:”<<salary<<end1;

}

};

Void main()

{

int eno;

float sal;

clrscr();

cout<<”Enter the employee number and salary\n”;

cin>>eno>>sal;

OOP NOTES BY R.M.PALWE

69

employee obj1(eno,sal);//dynamic initialization of object

cout<<”\nEnter the employee number and salary\n”;

cin>eno>>sal;

employee obj2(eno,sal); //dynamic initialization of object

obj1.display(); //function called

employee obj3=obj2; //copy constructor called

obj3.display();

getch();

}

5.3.4 Constructors and Primitive Types

In C++, like derived type, i.e. class, primitive types (fundamental

types) also have their constructors. Default constructor is used when no values are

given but when we given initial values, the initialization take place for newly

created instance. For example,

float x,y; //default constructor used

int a(10), b(20); //a,b initialized with values 10 and 20

float i(2.5), j(7.8); //I,j, initialized with valurs 2.5 and 7.8

5.3.5 Constructor with Default Arguments

In C++, we can define constructor s with default arguments. For

example,

The following code segment shows a constructor with default arguments:

Class add

{

OOP NOTES BY R.M.PALWE

70

Private:

Int num1, num2,num3;

Public:

Add(int=0,int=0); //Default argument constructor //to

reduce the number of constructors Void enter (int,int);

Void sum();

Void display();

};

//Default constructor definition

add::add(int n1, int n2)

{

num1=n1;

num2=n2;

num3=n0;

}

Void add ::sum()

{

Num3=num1+num2;

}

Void add::display ()

{

Cout<<”\nThe sum of two numbers is “<<num3<<end1;

}

Now using the above code objects of type add can be created with no initial

values, one initial values or two initial values. For Example,

Add obj1, obj2(5), obj3(10,20);

OOP NOTES BY R.M.PALWE

71

Here, obj1 will have values of data members num1=0, num2=0 and

num3=0

Obj2 will have values of data members num1=5, num2=0 and num3=0 Obj3

will have values of data members num1=10, num2=20 and num3=0

If two constructors for the above class add are

Add::add() {} //default constructor

and add::add(int=0);//default argument constructor

Then the default argument constructor can be invoked with either two

or one or no parameter(s).

Without argument, it is treated as a default constructor-using these two forms

together causes ambiguity. For example,

The declaration add obj;is ambiguous i.e., which one constructor to invoke i.e.,

add :: add()

or add :: add(int=0,int=0)

so be careful in such cases and avoid such mistakes.

5.4 SPECIAL CHARACTERISTICS OF CONSTRUCTORS

These have some special characteristics. These are given below:

(i) These are called automatically when the objects are created.

(ii) All objects of the class having a constructor are initialized before

some use.

(iii) These should be declared in the public section for

availability to all the functions.

(iv) Return type (not even void) cannot be specified for constructors.

(v) These cannot be inherited, but a derived class can call the

base class constructor.

OOP NOTES BY R.M.PALWE

72

(vi) These cannot be static.

(vii) Default and copy constructors are generated by the compiler

wherever required. Generated constructors are public.

(viii) These can have default arguments as other C++ functions.

(ix) A constructor can call member functions of its class.

(x) An object of a class with a constructor cannot be used as a

member of a union.

(xi) A constructor can call member functions of its class.

(xii) We can use a constructor to create new objects of its class type by

using the syntax.

Name_of_the_class (expresson_list)

For example,

Employee obj3 = obj2; // see program 10.5

Or even

Employee obj3 = employee (1002, 35000); //explicit call

(xiii) The make implicit calls to the memory allocation and

deallocation operators new and delete.

(xiv) These cannot be virtual.

5. 5 Declaration and Definition of a Destructor

The syntax for declaring a destructor is :

-name_of_the_class()

{

}

So the name of the class and destructor is same but it is prefixed with a ~

(tilde). It does not take any parameter nor does it return any value.

Overloading a destructor is not possible and can be explicitly invoked. In other

OOP NOTES BY R.M.PALWE

73

words, a class can have only one destructor. A destructor can be defined outside

the class. The following program illustrates this concept :

//Illustration of the working of Destructor function

#include<iostream.h>

#include<conio.h>

class add

{

private :

int num1,num2,num3;

public :

add(int=0, int=0); //default argument constructor //to

reduce the number of constructors

void sum();

void display();

~ add(void); //Destructor

};

//Destructor definition ~add()

Add:: ~add(void) //destructor called automatically at end of program

OOP NOTES BY R.M.PALWE

74

{

Num1=num2=num3=0;

Cout<<”\nAfter the final execution, me, the object has entered in
the”

<<”\ndestructor to destroy myself\n”; }

//Constructor definition add()

Add::add(int n1,int n2)

{

num1=n1;

num2=n2;

num3=0;

}

//function definition sum ()

Void add::sum()

{

num3=num1+num2;

}

//function definition display ()

Void add::display ()

{

Cout<<”\nThe sum of two numbers is “<<num3<<end1;

}

void main()

{

Add obj1,obj2(5),obj3(10,20): //objects created and initialized clrscr();

OOP NOTES BY R.M.PALWE

75

Obj1.sum(); //function call

Obj2.sum();

Obj3.sum();

cout<<”\nUsing obj1 \n”;

obj1.display(); //function call

cout<<”\nUsing obj2 \n”;

obj2.display();

cout<<”\nUsing obj3 \n”;

obj3.display();

}

5.6 Special Characteristics of Destructors

Some of the characteristics associated with destructors are :

(i) These are called automatically when the objects are destroyed.

(ii) Destructor functions follow the usual access rules as other member

functions.

(iii) These de-initialize each object before the object goes out of scope.

(iv) No argument and return type (even void) permitted with destructors.

(v) These cannot be inherited.

(vi) Static destructors are not allowed.

(vii) Address of a destructor cannot be taken.

(viii) A destructor can call member functions of its class.

(ix) An object of a class having a destructor cannot be a member of a

union.

5.7 DECLARATION AND DEFINITION OF A OVERLOADING

OOP NOTES BY R.M.PALWE

76

For defining an additional task to an operator, we must mention what is

means in relation to the class to which it (the operator) is applied. The operator

function helps us in doing so.

The Syntax of declaration of an Operator function is as follows:

Operator Operator_name

For example, suppose that we want to declare an Operator function for

‘=’. We can do it as follows:

operator =

A Binary Operator can be defined either a member function taking one argument

or a
global function taking one arguments. For a Binary Operator X, a X b can be

interpreted as either an operator X (b) or operator X (a, b).

For a Prefix unary operator Y, Ya can be interpreted as either a.operator Y () or

Operator Y (a). For a Postfix unary operator Z, aZ can be interpreted as either

a.operator Z(int) or Operator (Z(a),int).

The operator functions namely operator=, operator [], operator () and operator?

must be non-static member functions. Due to this, their first operands will be

lvalues.

An operator function should be either a member or take at least one class object

argument. The operators new and delete need not follow the rule. Also, an operator

function, which needs to accept a basic type as its first argument, cannot be a

member function. Some examples of declarations of operator functions are given

below:

class P
{

P operator ++ (int);//Postfix increment

P operator ++ (); //Prefix increment

P operator || (P); //Binary OR

}

Some examples of Global Operator Functions are given

below:

OOP NOTES BY R.M.PALWE

77

P operator – (P); // Prefix Unary minus
P operator – (P, P); // Binary “minus”

P operator - - (P &, int); // Postfix Decrement

We can declare these Global Operator Functions as being

friends of any other class.
Examples of operator overloading:

Operator overloading using friend.

Class time
{

int r;

int i;

public:

friend time operator + (const time &x, const time &y

);

// operator overloading using

friend time () { r = i = 0;}

time (int x, int y) {r = x; i = y;}

};

time operator + (const time &x, const time &y)

{

time z;

z.r = x.r +y.r;
z.i = x.i + y.i;

return z;

}

main ()
{

time x,y,z;

x = time (5,6);

y = time (7,8);

z = time (9, 10);

z = x+y; // addition using friend function +

}

OOP NOTES BY R.M.PALWE

78

Operator overloading using member function:

Class abc
{

char * str;

int len ; // Present length of the string

int max_length; // (maximum space allocated to string)

public:

abc (); // black string of length 0 of maximum allowed length of size 10.
abc (const abc &s) ;// copy constructor

~ abc () {delete str;}
int operator = = (const abc &s) const; // check

for equality abc & operator = (const abc &s); //

overloaded assignment operator

friend abc operator + (const abc &s1, const abc &s2);

} // string

concatenation abc::

abc ()
{

max_length = 10;

str = new char [

max_length]; len = 0;

str [0] = ‘\0’;

}

abc :: abc (const abc &s)

{

len = s. len;

max_length =

s.max_length; str = new

char [max_length];
strcpy (str, s.str); // physical copying in the new location.

}

OOP NOTES BY R.M.PALWE

79

[Not: Please note the need of explicit copy constructor as we are

using pointers. For example, if a string object containing string

“first” is to be used to initialise a new string and if we do not use

copy constructor then will cause:

Str1

F I R S T ‘\

Str2

That is two pointers pointing to one instance of allocated memory, this will

create
problem if we just want to modify the current value of one of the string only.

Even destruction of one string will create problem. That is why we need to

create separate space for the pointed string as:

Str1

F I R S T ‘\

Str2

 F I R S T ‘\

Thus, we have explicitly written the copy constructor. We have also written the

explicit destructor for the class. This will not be a problem if we do not use

pointers.

abc :: ~ abc ()
{

delete str;

}

abc & abc :: operator = (const abc &s)

{

if (this ! = &s) // if the left and right hand variables are

different

{

OOP NOTES BY R.M.PALWE

80

len = s.len;

max_length = s.max-length;

delete str; // get rid of old memory space allocated to this

string

str = new char [max_length]; // create new locations

strcpy (str, s.str); // copy the content using string copy

function

}

return *this;

}

// Please note the use of this operator which is a pointer to

object that invokes the call to this assignment operator

function.

inline int abc :: operator == (const abc &s) const
{

// uses string comparison

function return strcmp

(str,s.str);

}

abc abc:: operator + (const abc &s)

abc s3;

s3.len = len + s.len;

s3.max_length = s3.len;

char * newstr = new char [length + 1];

strcpy (newstr, s.str);

strcat (newstr,str);

s3.str = newstr;

return (s3);

}

Overloading << operator:
To overload << operator, the following function may be

used:

Ostream & operator << (ostream &s, const abc &x)

{

s<< “The String is:” <<x; }

return s;

}

OOP NOTES BY R.M.PALWE

81

You can write appropriate main function and use the above

overloaded operators as shown in the complex number

example.

5.8 ASSIGNMENT AND INITIALISATION

Consider the following class:

class student
{

char name;

int rollno;

public:

student () {name = new char [20];}

~ student () {delete [] name;}

};

int f ()

{ student S1,

S2; cin >>

S1; cin >>

S2;
S1 = S2;

}

Now, the problem is that after the execution of f (), destructors for S1&

S2 will be executed. Since both S1 & S2 point to the same storage,

execution of destructor twice will lead to error as the storage being

pointed by S1 & S2 were disposed off during the execution of destructor

for S1 itself.

Defining assignment of strings as follows can solve this problem,
class student

{

Public:

char name;

int rollno;

student () {name = new char [20];}

~ student () {delete [] name ;}

student & operator = (const

student &)

OOP NOTES BY R.M.PALWE

82

}

student & student :: Operator = (const student &e)

{

if (this ! =&e)

delete [] name;

name = new char [20];

strcpy(name, name);

}

return *this;

}

5.9 TYPE CONVERSIONS

We have overloaded several kinds of operators but we haven’t considered the

assignment operator (=). It is a very special operator having complex properties.

We know that = operator assigns values form one variable to another or assigns

the value of user defined object to another of the same type. For example,

int x, y ;

x = 100;

y = x;

Here, first 100 is assigned to x and then x to y.

Consider another statement, 13 = t1 + t2;

This statement used in program 11.2 earlier, assigns the result of addition,

which is of type time to object t3 also of type time.

OOP NOTES BY R.M.PALWE

83

So the assignments between basic types or user defined types are taken

care by the compiler provided the data type on both sides of = are of same type.

But what to do in case the variables are of different types on both

sides of the = operator? In this case we need to tell to the compiler for the

solution.

Three types of situations might arise for data conversion between different types :

(i) Conversion form basic type to class type.

(ii) Conversion from class type to basic type.

(iii) Conversion from one class type to another

class type. Now let us discuss the above three cases :

(i) Basic Type to Class Type

This type of conversion is very easy. For example, the following

code segment converts an int type to a class type.

class distance

{

int feet;

int inches;

public:

.....

.....

distance (int dist) //constructor

{

feet = dist/12;

inches = dist%12;

OOP NOTES BY R.M.PALWE

84

}

};

The following conversion statements can be coded in a function :

distance dist1; //object dist1 created int

length = 20;

dist1=length; //int to class type

After the execution of above statements, the feet member of dist1 will have a

value of 1 and inches member a value of 8, meaning 1 feet and 8 inches.

A class object has been used as the left hand operand of = operator,

so the type conversion can also be done by using an overloaded = operator

in C++.

(ii) Class Type to Basic Type

For conversion from a basic type to class type, the constructors can be

used. But for conversion from a class type to basic type constructors do not help at

all. In C++, we have to define an overloaded casting operator that helps in

converting a class type to a basic type. The syntax of the conversion function is

given below:

Operator typename()

{

.......

....... //statements

}

OOP NOTES BY R.M.PALWE

85

Here, the function converts a class type data to typename. For example,

the operator float () converts a class type to type float, the operator int ()

converts a class type object to type int. For example,

matrix :: operator float ()

{

float sum = 0.0;

for(int i=0;i<m;i++)

{

for (int j=0; j<n; j++)

sum=sum+a[i][j]*a[i][j];

}

Return sqrt(sum); //norm of the matrix

}

OOP NOTES BY R.M.PALWE

86

Here, the function finds the norm of the matrix (Norm is the square root of

the sum of the squares of the matrix elements). We can use the operator float () as

given below :

float norm = float (arr);

or

float norm = arr;

where arr is an object of type matrix. When a class type to a basic type

conversion is required, the compiler will call the casting operator function for

performing this task.

The following conditions should be satisfied by the casting operator function

:

(a) It must not have any argument

(b) It must be a class member

(c) It must not specify a return type.

(i) One Class Type to Another Class Type

There may be some situations when we want to convert one class type data

to another class type data. For example,

Obj2 = obj1; //different type of objects

Suppose obj1 is an object of class studdata and obj2 is that of class

result. We are converting the class studdata data type to class result type data

and the value is assigned to obj2. Here studdata is known as source class and

result is known as the destination class.

The above conversion can be performed in two ways :

(a) Using a constructor.

(b) Using a conversion function.

OOP NOTES BY R.M.PALWE

87

When we need to convert a class, a casting operator function can be used

i.e. source class. The source class performs the conversion and result is given to

the object of destination class.

If we take a single-argument constructor function for converting the

argument’s type to the class type (whose member it is). So the argument is of the

source class and being passed to the destination class for the purpose of

conversion. Therefore it is compulsory that the conversion constructor be kept in

the destination class.

5.10 Summary

In this lesson , we discussed the concept and type of constructor and

destructor. All the operators that can be overloaded. Even after writing

operator overloaded functions, the precedence of operators remains

unchanged. The ‘++’ & ‘--’ operators can be used as Postfix or Prefix

operators. So, separate functions overloading them for both the different

applications have been shown. we are of a view that Private data of a class can

be accessed only in member functions of that class.

5.11 Keywords
Constructor: Constructors is special member functions of classes that are

used to construct class objects.

Destructor: destructors are special member functions of classes that are

used to destroy class objects.

Operator Overloading: Overloaded operators are implemented as functions

and can be member functions or global functions.

OOP NOTES BY R.M.PALWE

88

3.12 Review Questions
Q. 1. What is the use of a constructor function in a class? Give a suitable example

of a

constructor function in a class.

Q. 2. Design a class having the constructor and destructor functions that shiukd

display

the number of object being created or destroyed of this class type.

Q. 3. Write a C++ program, to find the factorial of a number using a constructor

and a

destructor (generating the message “you have done it”)

Q. 4. Define a class “string” with members to initialize and determine the length

of the string. Overload the operators ‘+’ and ‘+=’ for the class “string”.

5.13 Further Readings
1. Rambagh J. , “ Object Oriented Modeling and Design” , Prentice Hall of

India , New Delhi.

2. E. Balagrusamy, “Object Oriented Programming with C++”, Tata McGraw

Hill.

OOP NOTES BY R.M.PALWE

89

--

Course: Object Oriented Programming using C++

Corurse Code-22316

Lesson: Inheritance(Extending Classes),Pointers,

Virtual Functions and

Polymorphism

OOP NOTES BY R.M.PALWE

90

Lesson No. : 4

--

STRUCTURE

4.1 INTRODUCTION
4.2 CONCEPT OF INHERITANCE

4.3 BASE CLASS AND DERIVED CLASS
4.4 SINGLE INHERITANCE

4.4.1 PRIVATE INHERITANCE

4.4.2 PUBLIC INHERITANCE
4.4.3 PROTECTED INHERITANCE

4.5 MULTIPLE INHERITANCE
4.6 NESTESD CLASSES

4.7 DYNAMIC MEMORY ALLOCATION/ DEALLOCATION

OPERATORS USING New, Delete

4.8 THE THIS POINTER

4.9 VIRTUAL FUNCTIONS

4.10 POLYMORPHIM

4.10.1 STATIC POLYMORPHISM OR COMPILE TIME

POLYMORPHISM

4.10.2 DYNAMIC POLYMORPHISM

4.10.3 STATIC AND DYNAMIC BINDING
4.11 Summary

4.12 Keywords

4.13 Review Questions

4.14 Further Readings

OOP NOTES BY R.M.PALWE

91

4.1 Introduction

Inheritance allows a class to include the members of other classes without

repetition of members. There were three ways to inheritance means, “public parts

of super class remain public and protected parts of super class remain protected.”

Private Inheritance means “Public and Protected Parts of Super Class remain

Private in Sub-Class”.

Protected Inheritance means “Public and Protected Parts of Superclass remain

protected in Subclass.
A pointer is a variable which holds a memory address. Any variable

declared in a program has two components:

(i) Address of the variable

(ii) Value stored in the

variable. For example,

int x = 386;

The above declaration tells the C++ compiler for :

(a) Reservation of space in memory for storing the value.
(b) Associating the name x with his memory location.

(c) Storing the value 386 at this location.

It can be represented with the following figure :

location name x

value at location 386

location number 3313

Here, the address 3313 is assumed one, it may be some other address also.

The pointers are one of the most useful and strongest features of C++. There

are three useful reason for proper utilization of pointer :

(i) The memory location can be directly accessed and manipulated.
(ii) Dynamic memory allocation is possible.

(iii) Efficiency of some particular routines can be improved.

OOP NOTES BY R.M.PALWE

92

4.2 CONCEPT OF INHERITANCE

Inheritance is a concept which is the result of commonality between classes.

Due to this mechanism, we need not repeat the declaration as well as member

functions in a class if they are already present in another class. For example,

consider the classes namely “minister” and “prime minister”. Whatever

information is present in minister, the same will be present in prime minister also.

Apart from that there will be some extra information in class prime minister due to

the extra privileges enjoyed by him. Now, due to the mechanism of inheritance, it

is enough only to indicate that information which is a specific to prime minister in

its class. In addition, the class prime minister will inherit the information of class

minister.

4.3 BASE CLASS AND DERIVED CLASS
Let us take the classes, Employee and Manager. A Manager is an

Employee with some additional information. when we are declaring the

classes Employee and Manager without applying the concept of inheritance,

they will look as follows:

class Employee
{ public: char*

name; int age;

char* address;

int salary;

char*departmen

t; int id;

};

Now, the class Manager is as follows:

Class Manager
{ public: char*

name; int age;

char* address;

int salary;

OOP NOTES BY R.M.PALWE

93

char*departmen

t; int id;

employee* team_members; //He heads a group of employees

int level; // his position in hierarchy of the organisation

.

.

.

.

};

Now, without repeating the entire information of class Employee in class

Manager, we can declare the Manager class as follows:

class Manager: Public Employee
{ public:

Employee*Team_members;

int level;

.

.

.

.

};

The latest declaration of class Manager is the same as that of its previous one,

with the exception that we did not repeat the information of class Employee

explicitly. This is what is meant by the Application of inheritance mechanism.

Please note that in the above example, Employee is called Base Class and

Manager is called Derived Class.

4.4 SINGLE INHERITANCE
In this Section, you will learn the ways of deriving a class from single class.

So, there will be only one base class for the derived class.

4.4.1 Private Inheritance

Consider the following classes:

class A { /*......*/);
class C: private A

OOP NOTES BY R.M.PALWE

94

{/*

.

.

.

.

*/

}

All the public parts of class A and all the protected parts of class A, become

private members/parts of the derived class C in class C. No private member

of class A can be accessed by class C. To do so, you need to write public or

private functions in the Base class. A public function can be accessed by any

object, however, private function can be used only within the class hierarchy

that is class A and class C and friends of these classes in the above cases.

6.4.2 Public Inheritance

Consider the following classes:

class A{/*........*/};

class E: public A

{/*

:

:

:

};

Now, all the public parts of class A become public in class E and protected

part of

A become protected in E

4.6.3 Protected Inheritance

Consider the following classes:
class E: protected A

{ /*

.

.

.

*/

};

OOP NOTES BY R.M.PALWE

95

Now, all the public and protected parts of class A become protected in class E.

No private member of class A can be accessed by class E. Let us take a single

example to demonstrate the inheritance of public and private type in more

details. Let
us assume a class close_shape as follows:

class closed_shape
{

public:

.

.

.

}

class circle: public closed_shape

// circle is derived in public access mode from class

// closed-shape

{

float x, y; // Co-ordinates of the centre of the

circle float radius;

public:

.

.

.

.

}

class semi-circle : public circle
{ private:

.

.

.

public:

.

.

.

.

}

class rectangle: private closed_shape

OOP NOTES BY R.M.PALWE

96

{

float x y ;

1, 1

float x ,y ;

2 2

public:

.

.

.

.

};

class rounded_rectangle : public rectangle

{

private:

public :

.

.

.

}

4.5 MULTIPLE INHERITANCE

A class can have more than one direct base classes.

Consider the following classes:

Class A {/**/};
Class B {/**/};

{ /*

.

.

.

.

*/
};

This is called Multiple Inheritance. If a class is having only one base class,

then it is known as single inheritance. In the case of Class C, other than the

operations

OOP NOTES BY R.M.PALWE

97

specified in it, the union of operations of classes A and B can also be applied.

4.6 Nestesd Classes
A class may be declared as a member of another class. Consider the

following:

Class M1
{

int n;

public:

int m;

};

class M2
{

int n;

public:

int m;

};

class M3
{ M1 N1;

public:

M2 N2;

};

Now, N1 and N2 are nested classes of M3. M3 can access only public

members of N1
and N2. A nested class is hidden in the lexically enclosing class.

4.7 Dynamic Memory Allocation/ Deallocation Operators

Using New, Delete:-

New Operator

In C++, the pointer support dynamic memory allocation (allocation

of memory during runtime). While studying arrays we declared the array size

approximately. In this case if the array is less than the amount of data we cannot

OOP NOTES BY R.M.PALWE

98

increase it at runtime. So, if we wish to allocate memory as and when required

new operator helps in this context.

The syntax of the new operator is given below :

pinter_variable = new data_type;Where the data type is any allowed

C++ data type and the pointer_variable is a pointer of the same data

type. For example,

char * cptr

cptr = new char;

The above statements allocate 1 byte and assigns the address to cptr.

The following statement allocates 21 bytes of memory and assigns the starting

address to cptr :

char * cptr;

cptro = new char [21];

We can also allocate and initialize the memory in the following way :

Pointer_variable = new data_type (value);

Where value is the value to be stored in the newly allocated memory space and it

must also be of the type of specified data_type. For example,

Char *cptr = new char (‘j’];

Int *empno = new int [size]; //size must be specified

Delete Operator

It is used to release or deallocate memory. The syntax of delete operator is :

delete_pointer_variable;

OOP NOTES BY R.M.PALWE

99

For example,

delete cptr;

delete [] empno; //some versions of C++ may require size

4.8 The This Pointer

We know that while defining a class the space is allocated for member

functions only once and separate memory space is allocated for each object, as

shown in figure

 Member func Member func Member func 3()

 Datamember 1 Datamember 1 Datamember 1

 Datamember 2 Datamember 2 Datamember 2

 Object 1 object 2

Fig. Allocation of memory for functions and class objects

With the above shown allocation there exists a serious problem that is which

object’s data member is to be manipulated by any member function. For

OOP NOTES BY R.M.PALWE

100

example, if memberfunc2() is responsible for modifying the value of

datamember1 and we are interested in modifying the value of datamember1 of

object3. In the situation like it, how to decide the manipulation of which

object’s datamember1? The this pointer is an answer to this problem. The this

is a pointer that points to that object using which the function is called. The

This pointer is automatically passed to a member function when it is called.

The following program illustrates the above mentioned concept :

#include<iostream.h>

#include<string.h>

class per

{

char name[20];

float saralry;

public :

per (char *s,float a)

{strcpy(name,s); salaru =a’}

per GR(per & x)

{ if (x.salary> =salary)

return &x;

else

return this;

}

void display()

{

cout<<”name : “<<name<<’\n’;

OOP NOTES BY R.M.PALWE

101

cout<<”salar :”<<salary<<’\n’;

}

};

Void main ()

{

Per p1(“REEMA:, 10000), p2(“KRISHANAN”,20000),

p3 (“GEORGE”, 50000);

The output of the Program would be :

Name : REEMA

Salary : 10000

Name : KRISHANAN

Salary : 20000

Here, the first call to the function GR returns reference to the object P1

and the second call returns reference to the object P2.

4.9 VIRTUAL FUNCTIONS

Polymorphism is a mechanism that enables same interface functions to

work with the whole class hierarchy. Polymorphism mechanism is supported

in C++ by the use of virtual functions. The concept of virtual function is

related to the concept of dynamic binding. The term Binding refers to binding

of actual code to a function

call. Dynamic binding also called late binding is a binding mechanism in

which the actual function call is bound at run-time and it is dependent on the

contents of function pointer at run time. It meant that by altering the content of

function pointers, we may be able to call different functions having a same

name but different code, that is demonstrating polymorphic behaviour.

Let us look into an example for the above concept:
#include <iostream.h>

class employee

{

OOP NOTES BY R.M.PALWE

102

public:

char *name;

char *department;

employee (char *n, char *d)
{

name = n;

department = d;

}

virtual void print ();

};

void employee:: print ()
{

cout << “name:”<<name;

cout << “department:” << department;
}

class manager : public employee
{

public:

short position;

manager (char *n, char *d, short p) : employee (n, d)

{

name = n;

department = d;

position = p;

}

void print ()

{

cout << name << “\n” << department << “\n” << position;

}

};

void main ()

{

employee* e (“john”, “sales”);

manager* m (“james”, “marketing”, 3);
e print (

) m print (

) ;

OOP NOTES BY R.M.PALWE

103

}

The output will be:
John

Sales

James

marketing

3

4.10 Polymorphim

Polymorphism means ‘one name multiple forms’. Runtime polymorphism

can

be achieved by using virtual functions. The polymorphism implementation in C++

can be shown as in figure.

 Polymorphism

Compile time

polymorphism

Runtime

polymorphism

Overloading

of

Overloadin

g of

Virtual

functions

Function(s)

Operator

(s)

 Fig. Implementation of polymorphism.

4.10.1 STATIC POLYMORPHISM OR COMPILE TIME

POLYMORPHISM

It means existence of an entity in various physical forms simultaneously.

Static polymorphism refers to the binding of functions on the basis of their

signature (number, type and sequence of parameters). It is also called early

OOP NOTES BY R.M.PALWE

104

binding because the calls are type and sequence of parameters). It is also called

early binding because the calls are already bound to the proper type of functions

during the compilation of the program. For example,

Void volume (int); //prototype

Void volume (int,int,int); //prototype

When the function volume () is invoked, the passed parameters determine

which one to be executed. This resolution takes place at compile time.

4.10.2 DYNAMIC POLYMORPHISM

It means change of form by entity depending on the situation. A function is

said to exhibit dynamic polymorphism if it exists in various forms, and the

resolution to different function calls are made dyanamically during execution time.

This feature makes the program more flexible as a function can be called,

depending on the context.

4.10.3 STATIC AND DYNAMIC BINDING

As stated earlier the dynamic binding is more flexible, and the static

binding is more efficient in certain cases.

Statically bound functions do not require run-time search, while the

dynamic function calls need it. But in case of dynamic binding, the function

calls are resolved at execution time and the user has the flexibility to alter the

call without modifying the source code.

For a programmer, efficiency and performance are more important, but to

the user, flexibility and maintainability are of primary concern. So a trade-off

between the efficiency and flexibility can be made.

OOP NOTES BY R.M.PALWE

105

.

4.11 Summary
In this Unit, you have been exposed to the concepts of base class and

derived classes. A derived class is a class which includes the member of

another class. This concept is also known as inheritance. When a derived class

has more than one direct base class, then it is called Multiple Inheritance.

There were three types of inheritance. We can also declare classes as members

of another class. We have also touched on the concept of polymorphism.

4.12 Keywords

Inheritance:- Inheritance is a mechanism of reusing and extending existing

classes without modifying them.
Polymorphism:- Polymorphism is a mechanism that enables same interface

functions to work with the whole class hierarchy.

6.13 Review Questions

Q.1. Illustrate the concept of inheritance with the help of an example.
Q.2. What is a virtual base class ? When do we make it?

Q.3. Write a program in c++ which demonstrate the use of inheritance.

Q.4. What do you understand by function returning a pointer ? Give any

suitable example to support your answer.
Q.5. Differentiate between compile time polymorphism and run time

polymorphism.

6.14 Further Readings

1. Rambagh J. , “ Object Oriented Modeling and Design” , Prentice Hall of

India , New Delhi.

2. E. Balagrusamy, “Object Oriented Programming with C++”, Tata McGraw

Hill.

OOP NOTES BY R.M.PALWE

106

Course

Code-22316
Lesson no:5

Paper Name:OOPS using C++

Lesson name: Managing console input /output

operations

OOP NOTES BY R.M.PALWE

107

Unit structure

5.1 Introduction

5.2 C++ streams

5.3 C++ streams classes

5.4 Unformatted I/O Operations

5.5 Formatted console I/O Operations

5.6 Managing output with manipulators

5.7 Design Our Own Manipulators

5.1 Introduction:

C++ supports two complete I/O systems: the one inherited from C

and the object-oriented I/O system defined by C++ (hereafter called simply

the C++ I/O system). Like C-based I/O, C++'s I/O system is fully integrated.

The different aspects of C++'s I/O system, such as console I/O and disk I/O,

are actually just different perspectives on the same mechanism.Every

program takes some data as input and generates processed data as output

following the input -process-output cycle.C++ supports all of C’s rich set of

I/O functions that can be used in the C++ programs.But these are restrained

from using due to two reasons ,first I/O methods in C++ supports the

concept of OOP and secondly I/O methods in c can not handle the user

defined data types such as class objects.C++ uses the concept of streams and

stream classes to implement its I/O operation with the console and disk fils.

5.2 C++ streams:-

A stream is a logical device that either produces or consumes

information. A stream is linked to a physical device by the I/O system. All

streams behave in the same way even though the actual physical devices

they are connected to may differ substantially. Because all streams behave

the same, the same I/O functions can operate on virtually any type of

physical device. For example, one can use the same function that writes to a

file to write to the printer or to the screen. The advantage to this approach is

that you need learn only one I/O system.

OOP NOTES BY R.M.PALWE

108

A stream act like a source or destination.The source stream that

provide data to the program is called the input stream and the destination

stream that receive output from

the program is called the output stream.C++ containes cin and cout

predefined streamsthat opens automatically when a program begins its

execution.cin represents the input stream connected to the standard input

device and cout represents the output stream connected to standard output

device.

5.3 C++ Stream Classes:

The C++ I/O system contains a hierarchy of classes that are used

to define various streams to deal with both the console and disk files.

These classes are called stream classes.Figure 5.1 shows the hierarchy

of the stream classes used for input and output operstions with the

console unit. These classes are declared in the header file iostrem. The

file should be included in all programs that communicate with the

console unit.

 Ios

 Pointer

istream streambuf ostream

input

outpu

t

 iostream

istream_withassign iostream_withassign ostream_withassign

Figure 5.1 Stream classes for console I/O operations

OOP NOTES BY R.M.PALWE

109

As in figure 5.1 ios is the base class for istream(input stream) and

ostream(output stream) which are base classes for iostream(input/output

stream).The class ios is declared as the virtual base class so that only one

copy of its members are inherited by the iostream.

The class ios provides the basic support for formatted and

unformatted input/output operations.The class istream provides the

facilities for formatted and unformatted input while the class

ostream(through inheritance) provides the facilities for formatted

output.The class iostream provides the facilities for handling both input

output

streams.Three classes namely istream_withassign,

ostream_withassign and iostream_withassign add assignment

operators to these classes.

Table 5.1 Stream classes for console operations

Class name Contents

ios(General
input/output

Contains basic facilities that are ued by all other input
and

stream class) output classes

Also contains a pointer to buffer object(streambuf

object)

Declares constants and functions that are necessary

for

 handling formatted input and output operations

istream(input stream) Inherits the properties of ios

Declares input functions such as get(),getline() and

read()

 Contains overloaded extraction operator>>

ostream(output

stream) Inherits the property of ios

 Declares output functions put() and write()

 Contains overloaded insertion operator <<

iostream (input/output
Inherits the properties of ios stream and ostream
through

OOP NOTES BY R.M.PALWE

110

stream)

multiple inheritance and thus contains all the input

and output

 Functions

streanbuf

Provides an interface to physical devices through

buffer

 Acts as a base for filebuf class used ios files

5.4 Unformatted input/output Operations:-

5.4.1 Overloaded operators >> and<<

Objects cin and cout are used for input and output of data by using the

overloading of >> and << operators.The >> operator is overloaded in the

istream class and << is overloaded in the ostream class. The following is the

format for reading data from keyboard:

cin>>variable1>>variable2>>…………..>>variable n

where variable 1 to variable n are valid C++ variable names that have

declared already.This statement will cause the computer to stop the

execution and look for the input data from the keyboard.the input data

for this statement would be

data1 data2…………..data n

The input data are separated by white spaces and should match the type of

variable in the cin list spaces, newlines and tabs will be skipped.

The operator >> reads the data character by character and assigns it to

the indicated location. The reading for a variable will be terminated at the

encounter of a white space or a character that does not match the

destination type. For example consider the code

int code;

cin>> code;

Suppose the following data is entered as input

42580

OOP NOTES BY R.M.PALWE

111

the operator will read the characters upto 8 and the value 4258 is assigned

to code.The character D remains in the input streams and will be input to

the next cin statement.The general form of displaying data on the screen is

cout <<item1<<item2<<…………<<item n

The item item1 through item n may be variables or constants of any basic type.

5.4.2 put() and get() functions:-

The classes istream and ostream define two member functions get(),put()

respectively to handle the single character input/output operations. There

are two types of get() functions.Both get(char *) and get(void) prototype

can be used to fetch a character including the blank space,tab and newline

character. The get(char *) version assigns the input character to its

argument and the get(void) version returns the input character.

Since these functions are members of input/output Stream classes,these

must be invoked using appropriate objects.

Example

Char c;

cin.get(c) //get a character from the keyboard and assigns it to c

while(c!=’\n’)

{ cout<< c; //display the character on screen

cin.get(c) //get another character

}

this code reads and display a line of text. The operator >> can be used to

read a character but it will skip the white spaces and newline character.The

above while loop will not work properly if the statement

OOP NOTES BY R.M.PALWE

112

cin >> c;

is used in place of cin.get (c);

The get(void) version is used as follows:

…………..

char c;

c= cin.get();

…………

The value returned by the function get() is assigned to the variable c.

The function put(), a member of ostream class can be used to output a

line of text, character by character. For example

cout.put(‘x’);

displays the character x and

cout.put(ch);

displays the value of variable ch.

The variable ch must contain a character value.A number can be used as an

argument to function put().For example,

cout.put(68);

displays the character D.This statement will convert the numeric value 68 to

a char value and displays character whose ASCII value is 68.

The following segment of a program reads a line of text from keyboard and

displays it on the screen

char c;

cin.get (c);

while(c!= ‘\n’)

{ cout.put(c);

cin.get (c);

}

OOP NOTES BY R.M.PALWE

113

The program 5.1 illustrate the use of two character handling functions.

Program 5.1

Character I/O with get() and put()

#include <iostream>

using namespace std;

int main()

{

int count=0;

char c;

cout<<”INPUT TEXT \n”;

cin.get(c);

while (c 1=’\n’)

{ cout.put(

c);

count++;

cin.get(c);

}

cout<< “\n Number of characters =” <<count

<<”\n”; return 0;

}

Input

Object oriented programming

Output

Object oriented programming

Number of characters=27

OOP NOTES BY R.M.PALWE

114

5.4.3 getline() and write() functions:-

A line of text can be read or display effectively using the line oriented

input/output functions getline() and write() .The getline() function reads a

whole line of text that ends with a newline character.This function can be

invokedby using the object cin as follows:

cin.getline(line,size);

This function call invokes the function getline() which reads character input

into the variable line.The reading is terminated as soon as either the newline

character ‘\n’ is encountered or size-1 characters are read(whichever occurs

first) .The newline character is read but not saved.instead it is replaced by

the null character.For example consider the following code:

char name[20];

cin.getline(name,20);

Assume that we have given the following input through key board:

Bjarne Stroustrup<press Return>

This input will be read correctly and assigned to the character array

name.Let us suppose the input is as follows:

Object Oriented Programming<press Return>

In this case ,the input will be terminated after reading the following 19

characters

Object Oriented Pro

Remember ,the two blank spaces contained in the string are

also taken into account.Strings cen be read using the operator

>> as follows

cin>>name;

But remember cin can read strings that do not contain white spaces.This

means that cin can read just one word and not a series of words such as

“Bjarne Stroustrup”.But it can read the following string correctly:

Bjarne_Stroustrup

OOP NOTES BY R.M.PALWE

115

After reading the string ,cin automatically adds the terminating null

character to the character array.

The program 5.2 demonstrates the use of >> and getline() for reading the

strings.

Program 5.2

Reading Strings With getline()

#include <iostream>

OOP NOTES BY R.M.PALWE

116

using namespace std;
int main()

{ int size=20; char

city[20]; cout<<”enter

city name:\n “;

cin>>city;

cout<<”city

name:”<<city<<”\n\n”;

cout<<”enter city name again:

\n”; cin.getline(city,size);

cout<<”city name now:”<<city<<”\n\n”;

cout<<”enter another city name: \n”;

cin.getline(city,size);

cout <<”New city name:”<<city<<”\n\n’;

return 0;

}

output would be:

first run

enter city name:

Delhi

Enter city name again:

OOP NOTES BY R.M.PALWE

117

City name now:

Enter another city name:

Chennai

New city name: Chennai

During fist run the newline character ‘\n\ at the end of “Delhi” which is

waiting in the input queue is read by the getline() that follows immediately

and therefore it dos not wait for any response to the prompt ‘enter city name

again’.The character’\n’ is read as an empty line.

The write() function displays an entire line and has the following form:

cout.write(line,size)

The first argument line represents the name of the string to be displayed

and the second argument size indicates the number of characters

automatically when the null character is encountered.If the size is greater

than the length of line, then it displays beyond the bound of line.Program5.3

illustrates how write() method displays a string

Program 5.3

Displaying String With write()

#include <iostream>

#include<string>

using namespace std;

int main(0

{

char * string1=”C++”;

char * string2 =”Programming”;

int m=strlen(string1);

int n =strlen(string2);

for (int i=1;i<n;i++)

OOP NOTES BY R.M.PALWE

118

{

cout.write(string2,i);

cout<<”\n”;

}

for (i<n;i>0;i--)

{

cout.write(string2,i);

cout<<”\n”;}

//concatenating strings
cout.write(string1,m).write(string2,n);

cout<<”\n”;

//crossing the boundary

cout.write(string1,10);

return 0;

}

output

P

Pr

Pro

Prog

Progr

Progra

Program

Programm

OOP NOTES BY R.M.PALWE

119

Programmi

Programmin

Programming

Programmin

Programmi

Programm

Program

Progra

Progr

Prog

Pro

Pr

P

C++ Programming

C++ Progr

The last line of the output indicates that the statement

cout.write(string1,10);

displays more character than what is contained in string1.

It is possible to concatenate two strings using the write() function.The statement

cout.write(string1,m).write(string2,n);

is equivalent to the following two statements:

cout.write(string1,m);

cout.write(string2,n);

5.5 Formatted Console I/O Operations:-

OOP NOTES BY R.M.PALWE

120

C++ supports a number of features that could be used for formatting the

output.These features include:

--ios class function and flags.

--manipulators.

--User-defined output functions.

The ios class contains a large number of member functions that would help

us to format the output in a number of ways.The most importany ones

among them are listed in table 5.2

Table 5.2 ios format functions

Function Task

Width()
To specify the required field size for displaying an
output

 value

Precision()
To specify the number of digits to be displayed after
the

 decimal point of float value

Fill()
To specify a character that is used to fill the unused
portion of

 a field

 a field

Setf()
To specify format flags that can control the form of
output

 display(such as left-justification and right-justification)

Unsetf() To clear the flags specified

Manipulators are special functions that can be included in the I/O

statements to alter the format parameter of stream .Table 5.3 shows some

important manipulator functions that are frequently used. To access these

manipulators, the file iomanip should be included in the program.

.

OOP NOTES BY R.M.PALWE

121

Table 5.3 Manipulators

Manipuators Equivalent ios function

setw() width()

setprecision() precision()

setfill() fill()

setiosflags() setf()

resetiosflags() unsetf()

In addition to these standard library manipulators we can create our own

manipulator functions to provide any special output formats.

5.5.1 Defining Field Width:width()

The width() function is used to define the width of a field necessary for the

output of an item.As it is a member function object is required to invoke it

like

cout.width(w);

here w is the field width.The output will be printed in a field of w

character wide at the right end of field.The width() function can specify the

field width for only one item(the item that follows immediately).After

printing one item(as per the specification) it will revert back the default.for

example,the statements

cout.width(5);

cout<<543<<12<<”\n”;

will produce the following output:

 5 4 3 1 2

OOP NOTES BY R.M.PALWE

122

The value 543 is printed right justified in the first five columns.The

specification width(5) does not retain the setting for printing the number

12.this can be improved as follows:

cout.width(5);

cout<<543;

cout.width(5);

cout<<12<<”\n”;

This produces the following output:

 5 4 3 1 2

The field width should be specified for each item.C++ never truncate the

values and therefore,if the specified field width is smaller than the size of

the value to be printed,C++ expands the field to fit the value.program 5.4

demonstrates how the function width() works.

Program 5.4

Specifying field size with width()

#include <iostream>

using namespace std;

int main()

{

int item[4] ={ 10,8,12,15};

int cost[4]={75,100,60,99};

cout.width(5);

cout<<”Items”;

cout.width(8);cout<<”Cost”;

cout.width(15);

OOP NOTES BY R.M.PALWE

123

cout<<”Total Value”<<”\n”;

int sum=0;

for(int i=0;i<4 ;i++)

{

cout.width(5);

cout<<items[i];

cout.width(8);

cout<<cost[i];

int value = items[i] * cost[i];

cout.width(15);

cout<<value<<”\n”;

sum= sum + value;

}

cout<<”\n Grand total = “;

cout.width(2);

cout<<sum<<”\n”;

return 0;

}

The output of program 5.4 would be

ITEMS COST

TOTAL

VALUE

10 75 750

8 100 800

12 60 720

15 99 1485

Grand total

OOP NOTES BY R.M.PALWE

124

=3755

5.5.2 Setting Precision: precision():-

By default ,the floating numbers are printed with six digits after the

decimal points. However ,we can specify the number of digits to be

displayed after the decimal point while printing the floating point

numbers.

This can be done by using the precision () member function as follows:

cout.precision(d);

where d is the number of digits to the right of decimal point.for example the

statements

cout.precision(3);

cout<<sqrt(2)<<”\n”;

cout<<3.14159<<”\n”;

cout<<2.50032<<”\n”;

will produce the following output:

1.141 (truncated)

3.142

(rounded to nearest

cent)

2.5 (no trailing zeros)

Unlike the function width(),precision() retains the setting in effect until it is

reset.That is why we have declared only one statement for precision setting

which is used by all the three outputs.We can set different valus to different

precision as follows:

cout.precision(3);

cout<<sqrt(2)<<”\n”;

cout.precision(5);

cout<<3.14159<<”\n”;

We can also combine the field specification with the precision setting.example:

cout.precision(2);

OOP NOTES BY R.M.PALWE

125

cout.width(5);

cout<<1.2345;

The first two statement instruct :”print two digits after the decimal point in

a field of five character width”.Thus the output will be:

 1 2 3

Program 5.5 shows how the function width() and precision() are jointly

used to control the output format.

OOP NOTES BY R.M.PALWE

126

Program 5.5

PRECISION SETTING WITH precision()

#include<iostream>

#include<cmath>

using namespace std;

int main()

{

cout<<”precision set to 3 digits\n\n”;

cout.precision(3);

cout.width(10);

cout<<”value”;

cout.width(15);

cout<<”sqrt_of _value”<<”\n”;

for (int n=1;n<=5;n++)

{

cout.width(8);

cout<<n;

cout.width(13);

cout<<sqrt(n)<<”\n”;

}

cout<<”\n precision set to 5 digits\n\n”;

cout.precision(5);

cout<<”sqrt(10) = “ <<sqrt(10)<<”\n\n”;

cout.precision(0);

cout<<”sqrt(10) = “ <<sqrt(10)<<”(default setting)\n”;

OOP NOTES BY R.M.PALWE

127

return 0;

}

The output is

Precision set to 3 digits

VALUE SQRT OF VALUE

1 1

2 1.41

3 1.73

4 2

5 2.24

Precision set to 5 digits

Sqrt(10)=3.1623

Sqrt(10)=3.1622

78 (Default setting)

5.5.3 FILLING AND PADDING :fill()

The unused portion of field width are filled with white spaces, by default.

The fill() function can be used to fill the unused positions by any desired

character.It is used in the following form:

cout.fill(ch);

Where ch represents the character which is used for filling the unused

positions.Example:

cout.fill(‘*’);

OOP NOTES BY R.M.PALWE

128

cout.width(10);

cout<<5250<<”\n”;

The output would be:

* * * * * * 5 2 5 0

Financial institutions and banks use this kind of padding while printing

cheques so that no one can change the amount easily.Like precision

(),fill()

Stays in effect till we change it.As shown in following program

Program 5.6

#include<iostream>

using namespace std;

int main()

{ cout.fill(‘<’);

cout.precision(3);

for(int

n=1;n<=6;n++)

{

cout.width(5);

cout<<n;

cout.width(10);

cout<<1.0/float(n)<<”\n”;

if(n==3)

cout.fill(‘>’);

OOP NOTES BY R.M.PALWE

129

}

cout<<”\nPadding changed

\n\n”; cout.fill(‘#’); //fill()

reset cout.width(15);

cout<<12.345678<<”\n”;

return 0;

}

The output will be

<<<<1<<<<<<<<<1

<<<<2<<<<<<<<0.5

<<<<3<<<<<<0.333

>>>>4>>>>>>0.25

>>>>5>>>>>>>0.2

PADDING CHANGED

#########12.346

5.5.4 FORMATTING FLAGS,Bit Fields and setf():-

The setf() a member function of the ios class, can provide answers left

justified.The setf()
function can be used as follows:

cout.setf(arg1.arg2)

The arg1 is one of the formatting flags defined in the class ios.The

formatting flag specifies the format action required for the output.Another

ios constant,arg2,known as bit field specifies the group to which the

formatting flag belongs. for example:

cout.setf(ios::left,ios::adjustfield);

cout.setf(ios::scientific,ios::floatfield);

OOP NOTES BY R.M.PALWE

130

Note that the first argument should be one of the group member of second

argument.

Consider the following segment of code:

cout.fill(‘*’);

cout.setf(ios::left,ios::adjustfield);

cout.width(15);

cout<<”table1”<<”\n”;

This will produce the following output:

T A B L E 1 * * * * * * * *

The statements

cout.fill(‘*’);

cout.precision(3);

cout.setf(ios::internal,ios::adjustfield);

cout.setf(ios::scientific,ios::floatfield);

cout.width(15);

cout<<-12.34567<<”\n”;

Will produce the following output:

- * * * * * 1 . 2 3 5 e + 0 1

5.6 Managing Output with Manipulators:-

The header file iomanip provides a set of functions called manipulators

which can be used to manipulate the output format. They provide the

same features as that of the ios member functions and flags.For

example,two or more manipulators can be used as a chain in one

statement as follows

cout<<manip1<<manip2<<manip3<<item;

OOP NOTES BY R.M.PALWE

131

cout<<manip1<<item1<<manip2<<item2;

This kind of concatenation is useful when we want to display several

columns of output. The most commonly used manipulators are shown

below

In the table 5.4

Manipulator Meaning Equivalent

setw(int w) Set the field width to w width()

setprecision(int d) Set the floating point precision()

 precision to d

setfill(int c) Set the fill character to c fill()

setiosflags(long f) Set the format flag f setf()

resetiosflags(long f)

Clear the flag specified

by f unsetf()

endl Insert new line and flush “\n”

 stream

Examples of manipulators are given below:

cout<<setw(10)<<12345;

OOP NOTES BY R.M.PALWE

132

This statement prints the value 12345 right-justified in a field of 10

characters. The output can be made left-justified by modifying the

statement

follows:

cout<<setw(10)<<setiosflags(ios::left)<<12345;

One statement can be used to format output for two or more values.For

example, the statement

cout<<setw(5)<<setprecision(2)<<1.2345

<<setw(10)<<setprecision(4)<<sqrt(2)<<setw(15)<<setiosflags(ios::scientific)<

<sqrt(3);

<<endl;

will print all the three values in one line with the field sizes of 5,10,15

respectively.

The following program illustrates the formatting of the output

values using both manipulators and ios functions.

Program 5.7

#include<iostream>

#include<iomanip>

using namespace std;

int main()

{

cout.setf(ios::showpoint);

cout<<setw(5)<<”n”<<setw(15)<<”inverse of n”<<setw(15)<<”sum of

terms”;

double term,sum=0;

for (int n=1;n<=10;n++)

{

OOP NOTES BY R.M.PALWE

133

term=1.0/float(n);

sum=sum + term;

cout<<setw(5)<<n<<setw(14)<<setprecision(4)

<<setiosflags(ios::scientific)<<term

<<setw(13)<<resetioflags(ios::scientific) <<sum<<endl;

OOP NOTES BY R.M.PALWE

134

}

return 0;

}

5.7 Designing our own manipulators:-

The general form for creating a manipulator without any

argument is ostream & manipulator (ostream & output)

{

……………

…………….(code)

……………..

return output;

}

The following program illustrate the creation and use of user defined

manipulators.

Program 5.8

#include <iostream>

#include <iomanip>

using namespace std;

ostream ¤cy (ostream & output)

{

output<< “Rs”;

return output;

}

ostream & form (ostream &output)

{

OOP NOTES BY R.M.PALWE

135

output.set(ios::showpos);

output.setf(ios::showpoint);

output.fill(‘*’);
output.precision(2);

output<<setiosflags(ios::fixed)

<<setw(10);

return output;

}

int main()

{

cout<<currency<<form<<78

64.5;

return 0;

}

the output of program is

Rs**+7864.50

In the program form represents

a complex set of format

functions and manipulators.

Summary

5.1.A stream is a sequence of

bytes and serves as a source or

destination for an I/O data.

5.2.The source stream that

provides data to the

program is called as input

stream and the destination

stream that receives output

from the program is called the

output stream.

5.3.The C++ I/O system contains

a hierarchy of stream classes used

for input and output

operations.These classes are

declared in the header file

‘iostream’.

5.4.cin represents the input stream

connected to standard input device

and cout represents the output

stream connected to standard

output device.

5.5.The >> operator is

overloaded in the istream class

as an extraction operator and

the << operator is overloaded in

the ostream class as an insertion

operator.

5.6.We can read and write a

line of text more efficiently

using the line oriented I/O

functions getline() and

write() respectively.

5.7.The header file iomanip

provides a set of manipulator

functions to manipulate output

formats.

Key Terms

adjustfield

output

stream

console I/O operations precision()

OOP NOTES BY R.M.PALWE

136

fill()

flags

get()

getline()

ios

put()

setfill()

setiosflags()

setw()

write()

iostream

ostream

Exercises

5.1.What is a stream?

5.2.Describe briefly the features of I/O system supported by C++.

5.3.How is cout able to display various types of data without any special

instructions?

5.4.Why it is necessary to include the file iostream in all our programs?

5.5.What is the role of iomanip file?

5.6. What is the basic difference between manipulators and ios member

functions in implementation?Give examples.

OOP NOTES BY R.M.PALWE

137

OOP NOTES BY R.M.PALWE

138

Corurse Code-22316
Lesson no:6

Paper Name:OOPS using C++
Lesson name: Working with C++ files

OOP NOTES BY R.M.PALWE

139

Unit Structure

6.1Introduction

6.2File stream classes

6.3 Steps of file operations

6.4Finding end of file

6.5File opening modes

6.6File pointers and manipulators

6.7Sequential input and output operations

6.8 Error handling functions

6.9 Command Line argument

6.1 Introduction :-

When a large amount of data is to be handled in such situations floppy

disk or hard disk are needed to store the data .The data is stored in these

devices using the concept of files. A file is a collection of related data stored

in a particular area on a disk. Programs can be designed to perform the read

and write operations on these files .The I/O system of C++ handles file

operations which are very much similar to the console input and output

operations .It uses file streams as an interface between the programs and

files. The
stream that supplies data to the program is called input stream and the one

that receives data from the program is called output stream. In other words

input stream extracts data

from the file and output stream inserts data to the file. The input operation

involves the creation of an input stream and linking it with the program and

input file. Similarly, the output operation involves establishing an output

stream with the necessary links with the program and output file.

OOP NOTES BY R.M.PALWE

140

Input Streams

Read data

Input

data

Disk files Program

Write data Data output

Output stream

Figure 6.1 File Input and output stream

6.2 File Stream Classes:-

The I/O system of C++ contains a set of classes that defines the file

handling methods. These include ifstream, ofstream and fstream.These

classes are derived from fstreambase and form the corresponding iostream

class. These classes ,designed to manage the disk files are declared in

fstream and therefore this file is included in any program that uses files.

 ios

istream streambuf ostream

iostream

file iostream

…………………………………………………………………………………

....................

ifstream fstream ofstream filebuf

fstream file

fstream base

OOP NOTES BY R.M.PALWE

141

Figure 6.2 Stream classes for file operations

OOP NOTES BY R.M.PALWE

142

6.3 Steps of File Operations:-

For using a disk file the following things are necessary

1. Suitable name of file

2. Data type and structure

3. Purpose

4. Opening Method

Table 6.1 Detail of file stream classes

Class Contents

filebuf Its purpose is to set the file buffers to read and write. Contains

Openprot constant used in the open() of file stream

classes.Also

 contain close() and open() as members.

fstreambase
Provides operations common to file streams.Serves as a base
for

fstream,ifstream and ofstream class.Contains open() and

close()

 functions.

ifstream Provides input operations.Contains open() with default input

mode.Inherits the functions

get(),getline(),read(),seekg(),tellg()

 functions from istream.

ofstream
Provides output operations.Contains open() with default
output

mode.Inherits put(),seekp(),tellp() and write() functions from

ostream.

fstream
Provides support for simultaneous input and output
operations.Contains

open with default input mode.Inherits all the functions from

istream and

 ostream classes through iostream.

OOP NOTES BY R.M.PALWE

143

The filename is a string of characters that makeup a valid filename for the

operating system. It may contain two parts ,primary name and optional

period with extension.
Examples are Input.data, Test.doc etc. For opening a file firstly a file stream

is created and then it is linked to the filename.A file stream can be defined

using the classes ifstream, ofstream and fstream that contained in the header

file fstream.The class to be used depends upon the purpose whether the

write data or read data operation is to be performed on the file.A file can be

opened in two ways:

(a) Using the constructor function of class.

(b) Using the member function open() of the class.

The first method is useful only when one file is used in the stream.The

second method is used when multiple files are to be managed using one

stream.

6.3.1Opening Files using Constructor:

While using constructor for opening files,filename is used to initialize the

file stream object.This involves the following steps

(i) Create a file stream object to manage the stream using the appropriate class

i.e the class ofstream is used to create the output stream

and the class create the input stream.

ifstream to

(ii) Initialize the file object using desired file name.

For example, the following statement opens a file named

“results” for output:

ofstream outfile(“results”); //output only

This create outfile as an ofstream object that manages the output stream.

Similarly ,the following statement declares infile as an ifstream object and

attaches it to the file data for reading (input).

ifstream infile (“data”); //input only

The same file name can be used for both reading and writing data.For example

Program1

…………………..

……………….

OOP NOTES BY R.M.PALWE

144

ofstream outfile

(“salary”);

//creates outfile and connects salary to it

………………

…………………..

Program 2

………………

……………

ifstream infile

(“salary”);

//creates infile and

connects salary to it

OOP NOTES BY R.M.PALWE

145

………………..

………………….

The connection with a file is closed automatically when the stream object

expires i.e when a program terminates.In the above statement ,when the

program 1 is terminated,the salary file is disconnected from the outfile

stream.The same thing happens when program 2 terminates.

Instead of using two programs,one for writing data and another for reading

data ,a single program can be used to do both operations on a file.

…………

…………….

outfile.close(); //disconnect salary from outfile and

connect to infile ifstream infile (“salary”);

………….

……………

infile.close();

The following program uses a single file for both reading and writing the

data .First it take data from the keyboard and writes it to file.After the

writing is completed the file is closed.The program again opens the same file

read the information already written to it and displays the same on the

screen.

PROGRAM 6.1

WORKING WITH SINGLE FILE

//Creating files with constructor function

#include <iostream.h>

#include <fstream.h>

int main()

{

OOP NOTES BY R.M.PALWE

146

ofstream outf(“ITEM”);

cout <<”enter item name: “;

char name[30];

cin >>name;

OOP NOTES BY R.M.PALWE

147

outf <<name <<”\n”;
cout <<”enter item cost :”;

float cost;

cin >>cost;

outf <<cost <<”\n”;

outf.close();

ifstream inf(“item”);

inf >>name;

inf >>cost;

cout <<”\n”;

cout <<”item name : “ << name <<”\n”;

cout <<”item cost: “ << cost <<”\n”;

inf.close();

return 0;

}

6.3.2 Opening Files using open()

The function open() can be used to open multiple files that uses the same

stream object. For example to process a set of files sequentially,in such case

a single stream object can be created and can be used to open each file in

turn. This can be done as follows;

File-stream-class stream-object;

stream-object.open (“filename”);

The following example shows how to work simultaneously with multiple files

PROGRAM 6.2

WORKING WITH MULTIPLE FILES

//Creating files with open() function

OOP NOTES BY R.M.PALWE

148

#include <iostream.h>

#include<fstream.h>

int main()

OOP NOTES BY R.M.PALWE

149

{

ofstream fout;

fout.open(“country”);

fout<<”United states of America \n”;

fout<<”United Kingdom”;

fout<<”South korea”;

fout.close();

fout.open(“capital”);

fout<<”Washington\n”;

fout<<”London\n”;

fout<<”Seoul \n”;

fout.close();

const int N =80;

char line[N];

ifstream fin;

fin.open(“country”);

cout<<”contents of country file \n”;

while (fin)

{

fin.getline(line,N);

cout<<line;

}

fin.close();

fin.open(“capital”);

cout<<”contents of capital file”;

OOP NOTES BY R.M.PALWE

150

while(fin)

{

OOP NOTES BY R.M.PALWE

151

fin.getline(line,N);

cout<<line;

}

fin.close();

return 0;

}

6.4 Finding End of File:

While reading a data from a file,it is necessary to find where the file

ends i.e end of file.The programmer cannot predict the end of file,if the

program does not detect end of file,the program drops in an infinite loop.To

avoid this,it is necessary to provide correct instruction to the program that

detects the end of file.Thus when end of file of file is detected,the process of

reading data can be easily terminated. An ifstream object such as fin returns

a value of 0 if any error occurs in the file operation including the end-of –

file condition.Thus the while loop terminates when fin returns a value of

zero on reaching the end-of –file condition.There is an another approach to

detect the end of file condition.The statement

if(fin1.eof() !=0)

{

exit(1);

}

returns a non zero value if end of file condition is encountered and zero

otherwise.Therefore the above statement terminates the program on reaching

the end of file.

6.5 File Opening Modes:

The ifstream and ofstream constructors and the function open() are

used to open the files.Upto now a single arguments a single argument is used

that is filename.However,these functions can take two arguments, the second

OOP NOTES BY R.M.PALWE

152

one for specifying the file mode.The general form of function open() with

two arguments is:

stream-object.open(“filename”,mode);

The second argument mode specifies the purpose for which the file is

opened.The prototype of these class member functions contain default

values for second argument and therefore they use the default values in the

absence of actual values.The default values are as follows :

ios::in for ifstream functions meaning open for reading only.

ios::out for ofstream functions meaning open for writing only.

The file mode parameter can take one of such constants defined in

class ios.The following table lists the file mode parameter and their

meanings.

Table 6.2 File Mode Operation

Parameter Meaning

ios::app Append to end-of-file

ios::ate Go to end-of-file on opening

ios::binary Binary file

ios::in Open file for reading only

ios::nocreate Open fails if file the file does not exist

ios::noreplace Open fails if the file already exists

ios::out Open file for writing only

ios::trunk Delete the contents of the file if it exists

6.6 File Pointers and Manipulators:

OOP NOTES BY R.M.PALWE

153

Each file has two pointers known as file pointers,one is called the

input pointer and the other is called output pointer..The input pointer is used

for reading the contents of of a given file location and the output pointer is

used for writing to a given file location.Each time an input or output

operation takes place,the appropriate pointer is automatically advanced.

6.6.1 Default actions:

When a file is opened in read-only mode,the input pointer is

automatically set at the beginning so that file can be read from the

start.Similarly when a file is opened in write-only mode the existing contents

are deleted and the output pointer is set at the beginning.This enables us to

write the file from start.In case an existing file is to be opened in order to

add more data,the file is opened in ‘append’ mode.This moves the pointer to

the end of file.

6.6.2 Functions for Manipulations of File pointer:

All the actions on the file pointers takes place by default.For controlling

the movement of file pointers file stream classes support the following

functions

• seekg() Moves get pointer (input)to a specified location.

• seekp() Moves put pointer (output) to a specified location.

• tellg() Give the current position of the get pointer.

• tellp() Give the current position of the put pointer.

For example, the statement

infile.seekg(10);

moves the pointer to the byte number 10.The bytes in a file are numbered
beginning from zero.Therefore ,the pointer to the 11

th
 byte in the

file.Consider the following statements:

ofstream fileout;

fileout.open(“hello”,ios::app);

int p=fileout.tellp();

On execution of these statements,the output pointer is moved to the end of file

“hello”

OOP NOTES BY R.M.PALWE

154

And the value of p will represent the number of bytes in the file.

6.6.3 Specifying the Offset:

‘Seek’ functions seekg() and seekp() can also be used with two

arguments as follows:

seekg (offset,refposition);

seekp (offset,refposition);

The parameter offset represents the number of bytes the file pointer is to be

moved from the location specified by the parameter refposition.The

refposition takes one of the following three constants defined in the ios

class:

• ios::beg Start of file

• ios::curCurrent position of the pointer

• ios::end End of file

The seekg() function moves the associated file’s ‘get’ pointer while the

seekp() function moves the associated file’s ‘put ‘pointer.The following

table shows some sample pointer offset calls and their actions.fout is an

ofstream object.

OOP NOTES BY R.M.PALWE

155

Table 6.3 Pointer offset calls

Seek call Action

fout.seekg(o,ios::beg) Go to start

fout.seekg(o,ios::cur) Stay at the current position

fout.seekg(o,ios::end) Go to the end of file

fout.seekg(m,ios::beg) Move to (m+1)th byte in the file

fout.seekg(m,ios::cur) Go forward by m byte from current position

fout.seekg(-

m,ios::cur) Go backward by m bytes from current position.

fout.seekg(-

m,ios::end) Go backward by m bytes from the end

6.7 Sequential Input and Output Operations:

The file stream classes support a number of member functions for

performing the input and output operations on files.One pairs of

functions,put() and get() are designed for handling a single character at a

time.Another pair of functions, write(),read() are designed to write and read

blocks of binary data.

6.7.1 put() and get() Functions:

The function put() writes a single character to the associated

stream.Similarly,the function get() reads a single character from the

associated stream.The following program illustrates how the functions work

on a file.The program requests for a string.On receiving the string,the

program writes it,character by character,to the file using the put() function

in a for loop.The length of string is used to terminate the for loop.

The program then displays the contents of file on the screen.It uses the

function get() to fetch a character from the file and continues to do so until

OOP NOTES BY R.M.PALWE

156

the end –of –file condition is reached.The character read from the files is

displayed on screen using the operator <<.

PROGRAM 6.3

I/O OPERATIONS ON CHARACTERS

#include <iostream.h>

#include <fstream.h>

#onclude<string.h>

int main()

OOP NOTES BY R.M.PALWE

157

{

char string[80];

cout<<”enter a string \n”;

cin>>string;

int len =strlen(string);

fstream file;

file.open(“TEXT”. Ios::in | ios::out);

for (int i=o;i<len;i++)

file.put(string[i]);

file .seekg(0);

char ch;

while(file)

{

file.get(ch);

cout<<ch;

}

return 0;

}

6.7.2 write() and read () functions:

The functions write() and read(),unlike the functions put() and get()

,handle the data in binary form.This means that the values are stored in the

disk file in same format in which they are stored in the internal memory.An

int character takes two bytes to store its value in the binary form,irrespective

of its size.But a 4 digit int will take four bytes to store it in the character

form.The binary input and output functions takes the following form:

infile.read ((char *) & V,sizeof (V));

outfile.write ((char *) & V ,sizeof (V));

OOP NOTES BY R.M.PALWE

158

These functions take two arguments.The first is the address of the variable

V, and the second is the length of that variable in bytes.The address of the

variable must be cast to type char*(i.e pointer to character type).The

following program illustrates how these two functions are used to save an

array of floats numbers and then recover them for display on the screen.

PROGRAM 6.4

// I/O OPERATIONS ON BINARY FILES

#include <iostream.h>

#include <fstream.h>

#include <iomanip.h>

const char * filename =”Binary”;

int main()

{

float height[4] ={ 175.5,153.0,167.25,160.70};

ofstream outfile;

outfile.open(filename);

outfile.write((char *) & height,sizeof(height));

outfile.close();

for (int i=0;i<4;i++)

height[i]=0;

ifstream infile;

infile.open(filename);

infile.read ((char *) & height,sizeof (height));

for (i=0;i<4;i++)

{

cout.setf(ios::showpoint);

cout<<setw(10)<<setprecision(2)<<height[i];

OOP NOTES BY R.M.PALWE

159

}

infile.close();

return 0;

}

OOP NOTES BY R.M.PALWE

160

6.8 Error Handling during File Operations:

There are many problems encounterd while dealing with files like

• a file which we are attempting to open for reading does not exist.

• The file name used for a new file may already exist.

• We are attempting an invalid operation such as reading past the end of

file.

• There may not be any space in the disk for storing more data.

• We may use invalid file name.

• We may attempt to perform an operation when the file is not opened

for that purpose.The C++ file stream inherits a ‘stream-state ‘member

from the class ios.This member records information on the status of a

file that is being currently used.The stream state member uses bit

fields to store the status of error conditions stated above.The class ios

support several member functions that can be used to read the status

recorded in a file stream.

Table 6.4 Error Handling Functions

Function Return value and meaning

eof()
Returns true(non zero value) if end of file is encountered
while

 reading otherwise returns false(zero).

fail()

Returns true when an input or output operation has failed

.

bad() Returns true if an invalid operation is attempted or any

unrecoverable error has occurred.However,if it is false,it

may be

possible to recover from any other error reported and

continues

 operation.

good()
Returns true if no error has occurred.This means all the
above

functions are false.For instance,if file.good() is true.all is

well

OOP NOTES BY R.M.PALWE

161

 with the stream file and we can proceed to perform I/O

operations.When it returns false,no further operations is

carried

 out.

These functions can be used at the appropriate places in a program to locate

the status of a file stream and thereby to take the necessary corrective

measures.Example:

……………

…………..

ifstream infile;

infile.open(“ABC”);

while(!infile.fail())

{

…………

………….. (process the file)

…………….

}

if (infile.eof())

{

……………(terminate the program normally)

}

else

if (infile.bad())

{

…………….(report fatal error)

}

else

OOP NOTES BY R.M.PALWE

162

{

infile.clear(); //clear error state

……….

……….

}

……..

………..

The function clear() resets the error state so that further operations can be

attempted.

6.9 Command Line Arguments:-

Like C,C++ also support the feature of command line argument i.e passing

the arguments at the time of invoking the program.They are typically used

to pass the names of data files.Example:

C>exam data results

Here exam is the name of file containing the program to be executed and

data and results are the filenames passed to program as command line

arguments.The command line arguments are typed by the user and are

delimited by a space.The first argument is alwayas the filename and

contains the program to be executed.The main() functions which have been

using upto now without any argument can take two arguments as shown

below:

main(int argc,char * argv[])

The first argument argc repesents the number of argumnts in

commandline.The second argument argv is an array of character type

pointers that points to the the command line arguments.The size of this

array will be equal to the value of argc.For instance,for command line

C>exam data results

The value of argc would be 3 and the argv would be an array of three

pointers to string as shown:

argv[0] exam

OOP NOTES BY R.M.PALWE

163

argv[1] data

argv[2] results

The argv[0] alwayas represents the command name that invokes the

program.The character pointer argv[1], and argv[2] can be used as file

names in the file opening statements as shown:

…………

…………

inline.open(argv[1]); //open data file for reading

…………..

…………..

outfile.open(argv[2]); //open result file for writing

…………..

…………..

OOP NOTES BY R.M.PALWE

164

Summary

1.Stream is nothing but flow of data .In object oriented programming the

streams are controlled using classes.

2.The istream and ostream classes control input and output functions

respectively.

3.The iostream class is also a derived class .It is derived from istream and

ostream classes.There are three more derived classes

istream_withassign,ostream_withassign and iostream_withassign.They are

derived from istream,ostream and iostream respectively.

4.There are two methods constructor of class and member function open() of

the class for opening the file.

5.The class ostream creates output stream objects and ifstream creates input

stream objects.

6.The close() member function closes the file.

7.When end of file is detected the process of readind data can be easily

terminated.The eof() function is used for this purpose.The eof() stands for

end of file.The eof() function returns 1 when end of file is detected.

8.The seekg () functions shifts the associated file’s input file pointer and

output file pointer.

9.The put() and get() functions are used for reading and writing a single

character whereas write() and read() are used to read or write block of binary

data.

Key

Terms

argv ios::in

clear()

ios::ou

t

eof()

iostrea

m

fail()

ofstrea

m

OOP NOTES BY R.M.PALWE

165

filemode open()

filebuf put()

get() read()

seekg()

seekp(

)

OOP NOTES BY R.M.PALWE

166

Exercises

6.1.What are input and output streams?

6.2.What are the various classes available for file operations.

6.3. What is a file mode ?describe the various file mode options available.

6.4.Describes the various approaches by which we can detect the end of file

condition.

6.5.What do you mean by command line arguments?

